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I. POPULATION HETEROGENEITY

All populations are heterogeneous. In demographic
analyses, two dimensions of individual differences
(age and sex) generally are observed. Many other char-
acteristics may be observed, including date and place
of birth, urban versus rural residence, marital status,
nationality, religious affiliation, number of children,
number of siblings, age of mother and father at an indi-
vidual’s birth, household structure, socioeconomic
status, educational achievement, occupation, spouse’s
occupation, smoking behavior, diet, height, environ-
mental quality at current residence, health status, cog-
nitive and physical functioning, genotype, and so
forth. In even the most thorough study, however, most
attributes of individuals are not measured. Indeed,
most studies focus on only a handful or two of the
- multitudinous dimensions of differences that distin-
guish one individual from another.

Observed heterogeneity creates various analytic
opportunities for demographers. Multiple regression
analysis, logit and probit analysis, survival analysis,
and other statistical methods have been developed to
estimate the impact of observed covariates. These
methods are treated in other chapters and in standard
textbooks, and will not be reviewed here.

Unobserved  heterogeneity creates  analytic
© problems rather than analytic opportunities: unob-
served heterogeneity is a nuisance, a headache, a
béte noire. Unobserved heterogeneity creates difficul-
ties for demographers because demographers study
how population characteristics change over age and
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time and place (and unobserved heterogeneity distorts
observed patterns of change).

II. COMPOSITIONAL CHANGE-

The root of the problem is that the members of pop-
ulation cohorts gradually die off or drop out. Animals
and plants die, machines break down, bachelors
marry, the married divorce, the childless give birth,
those with one child have a second, children leave
parental homes, students complete their education, the
unemployed find jobs, the well get sick, and the ill
recover. Much of demographic analysis focuses on the
transition rates associated with such changes. In many
instances, demographers are interested in how transi-
tion rates vary with age: They study, for instance, age-
specific death rates and marriage rates. In other cases,
duration matters, as in studies of recovery rates from
an illness or divorce rates as a function of the duration
of a marriage. In analyses of first, second, and subse-

. quent births, birth rates by parity and time since last

birth are of interest,

Hence, much of demographic analysis concerns the
estimation and comparison of drop-out rates in
cohorts that are changing because their members are
dropping out. The problem is that those who drop out
probably have a greater tendency to drop out than
those who do not. People who die at some age tend to
be frailer or more susceptible or at higher risk than
those who survive to an older age. Couples who con-
ceive after a month or two of trying may be more
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fecund than those who first conceive after many
months. Marriages that quickly end in divorce may
have been shaky marriages from the start. Thus, the
composition or structure of a heterogeneous cohort
changes as the cohort dies off. The frail or susceptible
tend to die first, leaving a more robust surviving
cohort.

III. THREE LEVELS OF EXPLANATION

Age- or duration-specific changes in birth, mar-
riage, death, and other transition rates can be inter-
preted in three alternative ways that might be called
level 0, level 1, and level 2 explanations. A level
0 explanation is that the data are erroneocus. A level
1 explanation is that the observed change is produced
by a corresponding change at the individual level. A
level 2 explanation is that the observed change is an
artifact of a change in the structure of the population
(ie, a change in the composition of a heterogeneous
cohort}.

Consider the report that the increase in. mortality
with age slows at the oldest ages (Vaupel et al. 1998;
Thatcher, Kannisto, and Vaupel 1998). A direct, level 1
explanation would be that for individuals at advanced
ages the probability of death increases relatively grad-
ually with age. A level 0 explanation (bad data) would
be that death rates at advanced ages are distorted by
age-misteporting problems and that the apparent
deceleration of mortality is a consequence of age exag-
geration. Finally, a level 2 explanation would be that
the leveling off of death rates after age 100 might be
“caused by decreases in the average frailty of a popu-
lation cohort at later ages as frailer members are
removed by mortality” (Vaupel et al., 1979).

Observed patterns of mortality deceleration in dif-
ferent populations are almost certainly due to a mix of
these three levels of explanation, with the importance
of the different explanations differing from population
to population. In almost all populations there are prob-
lems with age-misreporting at advanced ages and in
many populations such misreporting is very severe
(Jeune and Vaupel, 1999). All populations are hetero-
geneous, so level 2 explanations must have some
validity, although it is currently unclear how much of
the deceleration can be explained by compositional
change. The level 1 explanation that individuals age
more slowly at advanced ages may be partially right—
or completely wrong. There is some suggestive evi-
dence that for individuals the chance of death actually
rises faster than exponentially at advanced ages, even
though population death rates are increasing slower
than exponentially (Yashin and lachine, 1997).

At least since Edmund Halley (1693), demographers
have recognized the importance of level 0 and level 2
explanations as alternatives to direct level 1 explana-
tions. All careful demographers are aware of the preva-
lence of bad data and all well-trained demographers
know that demographic rates can differ because of dif-
ferences in population composition. Nonetheless, level
1 explanations—that what is observed on the popula-
tion level also holds on the individual level—seem so
natural that even careful demographers often find
themselves naively and uncritically slipping into
direct interpretations of population changes and dif-
ferences (Vaupel and Carey, 1993).

IV. FRAILTY MODELS

Demographers try to distinguish between type 1
and type 2 explanations using frailty models (Vaupel’
et al, 1979} and the statistical methods of survival
analysis (Cox and Oakes, 1984). In this approach, the
trajectory of a cohort’s rate of death or exit is usually -
captured by either the survival function s(x) or the .
hazard function p(x). Demographers call this hazard
function the force of mortality when they are studying.
death rates and in some contexts the term intensity is
used instead of hazard. The survival function and the
hazard function are interrelated by the following two
formulas: 4

_ ds(x)/ax .
B === (Bq.18)

and
s(x) = e‘JcT w0 (Eq: 1b) .':1

In the simplest case there is no information about. -
the characteristics of the individuals in the cohort
except age (and whatever characteristics describe the. .
cohort as a whole, such as “males born in France in:
1948").

Because all populations are heterogeneous, it -
makes sense to model the population as a mix of -
homogeneous subpopulations (which might each:
consist of a single individual). Let 5(x,z) be the survival:
function for the subpopulation with frailty z, where'
frailty in this context simply refers to the susceptibil-
ity or liability of the subpopulation to the hazard. In_
general, frailty models are designed such that the
greater an individual’s frailty, the greater the individ-
ual’s susceptibility or liability to the hazard of interest:

Let 5(x) be the survival function for the populatmn-
as a whole, such that '




" that

F(x)= j:s(x,z)g(z}dz (Eqg. 2a)

?{;}i; in the continuous case, where g(z) is the probability
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_ aebx
A =— (Eq. 8)
act . .
1+ "“E_?_ (8 - 1)

distribution of z at age zero and

3(x) = 2 m(z)s(x,z) (Eq. 2b)
in the discrete case, where 7(z) is the proportion of the
~ cohort in subpopulation z at age zero. This general

" frailty model can be more specifically formulated in

© . several ways.

1. Relative-Ri_sk Models

One specification is the proportional-hazards or
* relative-risk model

H(x,2) = zp(x) (Eq. 3a)

or, equivalently,
s(x,z) = s{x)* (Eqg. 3b)

which was suggested by Vaupel et al. (1979). In this
model, u(x) is the baseline, standard, underlying
. hazard for individuals of frailty one and s(x) is the cor-
responding survival function. Vaupel et al. (1979) show

Hx) = Z(0)u(x) (Eq- 4)

where Z{x) is the average frailty of those alive at age x.
- Because z is fixed and does not vary with age, Z(x)
~ declines with age as the frail drop out of the cohort.
Hence, J(x) increases more slowly than p(x} does.

Indeed, [i(x) can be declining even though pu(x) is
«:. rising.

For this model z is often taken to be gamma dis-

. tributed with mean 1 and variance ¢, because this

gamma distribution leads to convenient mathematic
. relationships. In particular, for gamma-distributed
b frailty

x -1 2
2w =(1+0"[ pdt) =50°  (Bq.5)

© " where §(x) is the survival function for the population
.. as a whole. It follows from Equation 5 that

5(x) = (1 - ons()y " (Eq. 6)

As a specific example of this kind of gamma-frailty
relative-risk model, suppose that mortality on the indi-
vidual level follows a Gompertz trajectory:

u(z) = ag (Eq.7)

It follows from Equations 4 and 5 that the popula-
tion trajectory of mortality will follow the logistic

leveling off at a value of b/ %

2. Accelerated-aging Models

Another specification is the accelerated-aging
model

plx,2) = u(xz) (Eq. 9)

which is analogous to the accelerated-failure model
used in reliability engineering. In the special case
where u(x) follows the Weibull trajectory

w(x) = ax? (Eq. 10)

where 2 and b are parameters, this model is equivalent
to the relative-risk model, because

Eq. 11)

In the special case where u(x) follows the Gompertz
trajectory, given in Equation 7, the accelerated-aging
model is of the form 2¢”* whereas the relative-risk model
is of the form za¢"™. Small changes in the slope parameter
b can have larger effects on mortality at older ages than
big changes in the level parameter 2. Hence, much less
heterogeneity is needed in an accelerated-aging Gom-
pertz model than in a relative-risk Gompertz model to
produce substantial differences between p{x}) aand [i(x)
at older ages. This is illustrated in Figure 21-1.

a(zx) = ztax® = 2 ulx)

3. Discrete Frailty Models

The discrete frailty model is also a useful specifica-
tion of the general frailty approach, as discussed by
Vaupel and Yashin (1985). In this case, '

Hlx,z) = jul(x) (Eq. 12)

Thus, z is now an index for the different subpopu-

lations, each of which has a hazard function. Let 7, be

the proportion of the population in subpopulation z at
age zero. Then

)= 3 m.a. (%) (Eq. 13)

and
FE(x) = 3 7.8, ()2, (x) / ¥ m.s.(%)  (Eq. 14)
If it is assumed that z is a relative-risk factor, then

UAx) = Zu(x) and s(x) = s{x)*. Heckman and Singer
{1984) suggested that this specification be used to
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FIGURE 21-1 The accelerated-aging mode] can produce greater mortality deceleration with less hetero-
getieity than the relative-risk model baseline Gompertz hazard with a = 0.0001 and & = 0.1 compared with
population hazard in relative-risk model with ¢® = 0.25 and in accelerated-aging model with o = 0.05. Note

that hazards are shown on a log scale,

control for the effects of hidden heterogeneity when
fitting models to data. More generally, however, g,(x)
can take on a different functional form for each value
of z.

A simple example of discrete frailty models is the
mover-stayer model (Blumen et al., 1955) in which one
group in the population is susceptible to emigration,
marriage, divorce, or some disease and the other group
is immune. Let 7 be the proportion of the population
that is susceptible. Thus it follows from Equation 14
that

P(x) = m(ux)/ (ms(x) + 1 -7 (Eq. 15)

Even if u{x) steadily increases, H(x) will eventually
decline as s(x) approaches zero. Figure 21-2 shows an
illustrative example.

Divorce rates in some countries and periods follow
the kind of rising-falling pattern shown in Figure 21-2.
Does this imply that marriages are shakiest after a few
years of marriage? Not necessarily, as Figure 21-2 illus-
trates. The same general effect could be produced if the
second group were not immune but simply at low risk.

Indeed the rising—falling pattern could be produced if

the hazard steadily increases for the high-risk group
but steadily decreases for the low-risk group. For one
group marriages strengthen with duration, whereas
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FIGURE 21-2 The population hazard may increase and then
decline if the hazard rate for one group is increasing and the other
group is immune. The hazard for the susceptible group is Wx} =
0.01z. It was assumed that 95% of the population is susceptible.



for the other, marriages weaken (despite the appear-
ance of the curve for the entire cohort, there is no
divorce hump).

4. Changing Frailty Models

~ As Box (1979) asserted, all models are wrong, but
-some models are useful. It is often useful to define an
‘individual’s frailty as fixed, at least after some age, and
to classify individuals into groups depending on their
frailty at that age. Alternatively, it may sometimes be
useful to develop models in which an individual's
frailty can change with time or age.

In one simple model of this kind, all individuals
start out with frailty one. They suffer a hazard of death
of ty{x) at age x. They also are subject to the hazard
A(x) that their frailty will change from one to two, in
which case their hazard of death changes to u(x). The
-second state might be associated with some morbid
event, such as having a heart attack or losing the ability

. to walk. Alternatively, the hazard of death could be the
hazard of divorce and the event could be having a
baby. Let s,(x) denote the proportion of the cohort that

.is alive with frailty one at age x and let s,(x) similarly
.denote the proportion of the cohort that is alive with

" frailty two at age x. In the simplest case when the three

“hazards functions are constant, it is not difficult to

‘show that

sl(x)¥ Az (Eq. 16a)
“and

810) = (e

g~y (B 16b
1+ A=ty ) (Eq )

" The population hazard is given by

_ Aﬂze[mﬂwﬂz)" "‘(ﬂl —ﬂ-z)(ﬂq +/'L)
”(@ = T G o) (Eq. 17)
At age zero, 1(0) = y; and as x approaches infinity,

H(x) = phy if iy < gy + A and J(x) = 4 + A otherwise.
Hervé Le Bras {1976) and Leonid Gavrilov and
- Nathalia Gavrilova (1991) proposed generalizations of
. this model. Instead of two states of frailty, suppose that
' frailty z can equal any nonnegative integer. Initially
everyone has frailty zero. People with frailty z face a
" hazard of death of i, + zit as well as a hazard of 4, +zA
. that their fraiity will change to z + 1. Although u,, i, A,
. and A are constants and do not vary with age or time,
.~ the population hazard Ji(x) follows a logistic trajectory.
" Anatoli Yashin, James Vaupel, and Ivan lachine (1994)
show that this trajectory is identical to the trajectory
" obtained  if frailty is fixed and gamma distributed and
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the baseline hazard is of the Gompertz form u(x) = ae™
with pix, z) = zu(x) + ¢, where ¢ is the constant Makeham
term. Without ancillary information it is impossible to
tell whether frailty is fixed or frailty is changing.

Instead of only taking on discrete values, frailty can
be modeled to vary continucusly. Vaupel, Yashin, and
Kenneth Manton (1988), for instance, develop a chang-
ing-frailty model based on a stochastic differential
equation. They apply the model to clarify the interac-
tion of debilitation, recuperation, selection, and aging.
The model yields various insights about lingering
mortality consequences of disasters such as wars,
famines, and epidemics that may weaken the sur-
vivors. A key result is that debilitation and selection
are interdependent: debilitation that increases popula-
tion heterogeneity will result in subsequent mortality
selection; selection, by altering the distribution of
frailty, will influence the impact of debilitating events.
The basic equation of the model is

L(x,z) = 1(x) + z(x)1e= (%) (Hq. 18}

where l,(x) is the baseline hazard, p»(x) determines
the additional hazard, and z(x) is the frailty of the indi-
vidual at age x as given by

z(x} = Y}(x) {(Eq. 19}
where Y(0) is normally distributed and
AY(x) = [ay(x) + (31(x) — (Eq 20)

a2 Y (x)]dx + b{x)dWi{x)

where W is a Wiener process with W(0) = 0. The func-
tions @, and 4, represent the effects of debilitation
whereas 4, represents homeostatic healing and recu-
peration; the function b determines the importance of
the Wiener process term.

5. Correlated-Frailty Models

Because of shared genes and a shared childhood
environment, two twins may have similar frailties.
More generally, relatives or people who live in the
same environment may have similar frailties. As dis-
cussed by Vaupel (1990 and 1991), shared-frailty
models can be used to analyze such situations, but a
more appropriate and powerful approach involves the
correlated-frailty models developed by Yashin and col-
leagues and explained in Yashin, Vaupel, and Iachine
(1995) and Yashin and lachine (1997).

A simple variant of this kind of model involves
pairs of twins, with one twin having fixed frailty z; and
the other twin having fixed frailty z, and with the
hazard of mortality given by pu(x, z;) = Zpt(x), i = 1,2.
The correlation between the two frailties is modeled as
follows. Let



276 Vaupel and: Yashin
=Yy F IR {Eq. 21a) Age at death may not be known for all individuals:
and let it may only be known that the individual survived at
least until some age. These are called right-censored
=Y — Vs (Eq. 21b} pbservations. They can arise if some individuals never

where the y;, i = 0,1,2, are three independent random
variables that are gamma distributed with the same

scale parameter. The gamma distributions of y, and 1,

have the same shape parameter, but this parameter
may differ for y,. The frailties z; and z, are constrained
to have a mean of one and they have the same vari-
ance ¢ The values of ¢ and p, the correlation coeffi-
cient between the two frailties, are simple functions of
the scale and shape parameters.

As shown by Yashin, Vaupel, and Iachine (1995), the
bivariate survival function for the population of twins
is given by §

Sy = ()" 50} 50a) ™ +
By ~1y#

Because the survival of adult twins is very similar
to the survival of adult singletons, in studies of adult
mortality the function 35(x) can be taken from demo-
graphic life tables for the general population. In this
case the bivariate survival function depends only on
&’ and p; no assumptions have to be made about the
shape of a baseline hazard function. Using Equation 22
values of ¢® and p can be estimated using the kind of
maximum-likelihood estimation described below.
Then the baseline survival function can be calculated
by rearranging Equation 6 as follows:

s(x) = exp((1 ~ 5(x))/ ) (Eq. 23)

and u(x) can be calculated from Equation 1. Applying
this model to survival data on Danish twins born
between 1870 and 1900, Yashin and Iachine (1997)
found that the baseline hazard of mortality increases
faster than exponentially after age 30 even though the
population hazard of mortality decelerates at advanced
ages. That is, it is possible that the observed leveling off
of mortality may be entirely accounted for by a level 2
explanation (compositional change due to mortality
selection) and the actual trajectory of mortality for indi-
viduals may rise more rapidly than a Gompertz curve.

(Eq. 22)

V. EMPIRICAL DATA

The survival or duration data used in fitting frailty
models is often of the following form. There are n indi-
viduals in some cohort, with observed ages. at death
Xy i=1,..., n. More generally, X; stands for age at
some event, such as marriage, or some duration, such
as time from marriage to divorce. For simplicity, we
will refer to X; as age at death. .

“die” {e.g., some women never give birth, some people
never marry, some married people never divorce).
They can also arise if some individuals are still alive at
the end of a study or if some individuals drop out of
the study and are lost to follow-up.

It may also be the case that it is only known that
individual i died between age x; and age x,. And it may
be the case that an individual is not followed from age
zero but from some age x,, so that the individual is
only at risk of dying after age x,. These are called Jefi-
censored or left-truncated observations.

Various covariates may be observed: We will let wy
denote the value of the j~th covariate for individual i.

VI. METHODS OF PARAMETER
ESTIMATION

Various methods may be used fo fit frailty models
to empirical survival or duration data. In an impertant
article on deceleration in the age pattern of mortality
at older ages, Shiro Horiuchi and John Wilmoth (1998)
estimate the parameters of a Gompertz—-Makeham:
model with period effects and unobserved frailty by a
weighted-least-squares procedure. They carefully doc-.
ument the method they use, so their article is of ped-
agogic value as well as being of substantive interest.

It is more common, however, to use maximum-like-
lihood methods in analyses of survival or duration data
in general and in fitting frailty models in particular. We
recommend a textbook such as that by David Cox and
David Oakes (1984) for discussion of this approach.
Here we adumbrate a few points of particular rele-
vance to the estimation of parameters of frailty models.

The likelihood of an observation X; can be thought
of as the probability of observing this value given a
particular moedel with specific parameter values. More
generally, the likelihood can be proportional to. the
probability instead of being equal to the probability;
because any parameter values that maximize the prob-
ability of the data will also maximize any quantity that
is proportional to the probability. Let s(x) be the prob-
ability of surviving from age 0 to age x, for some indi-
vidual with a vector of covariates w; and with some
unobserved frailty z. Then, if age at death X is
observed and if the individual is followed from age
zero, the likelihood of the observed age at death is
H(X)si(). I it is only known that the individual sur-
vived at least to age X, the likelihood of this observa-
tiort is §(X). If it is knewn that the individual died
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between ages Xj; and X, then the likelihood of this
datum is s(X;) — s(3). If the individual is first
observed at age X;; and then dies at age Xy, then the
likelihood is p(X5)s(Xx) /5(Xy).

It is customary in survival analysis to make calcula-
tions in terms of the logarithm of the likelihood, the
: log-likelihood, because the likelihood of a data set is
-~ often extremely small. Let L(X) denote the log-
likelihood of the observation. The log-likelihood of the
entire data set is given by the sum of all the L(X,} ‘s. The
maximum-likelihood estimate of the parameter values
in a model is the estimate that maximizes the likelihood
or, equivalently, the log-likelihood of the data.

The effect of observed covariates on survival can be
modeled in many ways. Because our focus here is on
hidden heterogeneity and not on general methods of
- survival analysis, we restrict our attention to the
simple case in which the covariates are fixed (rather
than changing over time). Furthermore, we will
assume that the impact of the covariates on an indi-
vidual’s hazard is given by Wiufx, z), where W, is the

* net relative-risk imposed by the vector of observed

covariates. Often in survival analyses, W, is modeled
- Ly
7 bY W, =g/
. estimated.
For ease and conciseness of exposition we will con-
sider only the relative-risk frailty model with gamma-
distributed frailty. For the relative-risk model
(Equation 3b},

» where the b; ‘s are coefficients that are

(%) = s(x)"s (Eq. 24)

where s(x) is the baseline or standard survival function
for individuals of frailty 1 and with an estimated
relative-risk W; of 1. In the special case of gamma-
distributed frailty, it follows from formula (6} that

5(x) = (1 - W, Ins(x)y /™ (Eq. 25)

where 5(x) is the probability that an individual with
estimated relative-risk W, will survive to age x and
where o is the variance of frailty. The bar over the s
indicates that 5 is an average: unobserved frailty z is
removed from the formula by taking the expected
value of s with respect to z. The corresponding value
of [i{x) can be calculated by Equation 1 and the log-
likelihood L{x} can then be calculated as indicated
above.

A remaining issue is how to estimate the baseline
survival function s(x). There are two approaches to
this. First, a parametric form can be assumed. For
instance, it might be assumed that s(x) [and p(x)] are
of the Gompertz or Weibull form. Kenneth Manton,
Eric Stallard, and James Vaupel (1986) provide an
example of this kind of analysis.

Alternatively, s(x) can be estimated nonparametri-
cally. That is, values of s(x) can be estimated for a
sequence of ages over some age range without impos-
ing any assumptions on the shape of the trajectory of
s(x). Several different methods of nonparametric esti-
mation have recently been proposed and research in
this area is rapidly developing. Here we sketch one
method, to illustrate the general idea of nonparamet-
ric estimation. ,

Suppose that the survival data that are available for
analysis are based on a large random survey of some
population. Further suppose that survival in the pop-
ulation is known, perhaps from vital-statistics data. Let
5(x) be the survival curve for the population. As above,
let 5(x) be the survival function for the individual 7 in
the survey. For a large random survey, the following
equation might approximately hold:

5(x)= 2 Si(x)/”
i=1
If so, the following method could be used. For the
relative-risk gamma-frailty specification, Equation 25
can be substituted in Equation 26, yielding

(Eq. 26)

§(x)=Y (1-c’W;In s(x))—lf ot /n (Eq. 27)
7

For any specific set of estimated values for W, and
@, one and only one value of 5(x) will satisfy this egua-
tion. Hence, & and the coefficients that determine W,
can be determined by maximum-likelihood estimation
under the constraint that Equation 27 holds.

The theoretical and practical properties of this algo-
rithm still need to be investigated. Many other esti-
mation procedures that do not require parametric
estimation of s(x) are being developed and various
imputation methods, EM algorithms, and other con-
cepts might be used (see, e:g., Andersen, Borgan, Gill,
and Keiding, 1993). The statistical estimation of frailty
models is currently a hot topic of statistical research
and the coming decade is likely to produce major
advances in the development of powerful, practicable
procedures.

CONCLUSION

The frailty models and parameter-estimation
methods sketched above are not yet available as part
of easy-to-use computer software packages. Several
software packages, however, include convenient
options for fitting other kinds of models to survival
and duration data. In particular, David Cox (partial
likelihood) regression can be readily applied to empir-
ical observations. Why bother with frailty models
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when Cox regression can be used to estimate the coef-
ficients of covariates in hazards models? There are
three main reasons.

First, Cox regression yields coefficient estimates that
tend to be biased toward zero. As epidemiologists
have often observed, most risk factors that raise the
chance of death appear to become less important with
age or duration. The reason generally is that high-risk
individuals who survive often have unobserved
strengths or advantages, whereas many of the appar-
ently low-risk individuals who survive may be rela-
tively weak or unhealthy along unobserved
dimensions. Consequently, at older ages or longer
durations, the high-risk group differs in composition
from the low-risk group: the high-risk group has lower
unobserved frailty. If unobserved frailty is not
included in the model, this effect will result in a con-
vergence with age of the hazard functions for the two
groups, as discussed by Vaupel et al. (1979) and Vaupel
and Yashin (1985). The proportional-hazards assump-
tion used in Cox regression does not allow for such
convergence: The estimated relative risk is a measure
of the average relative risk over the entire age range.
The implication of this is that Cox regression tends to
result in underestimates of risk factors: The estimates
are biased toward zero. More generally, any method
that ignores hidden heterogeneity will tend
to underestimate risk factors at older ages or longer
durations.

Second, frailty models permit estimation of under-
lying {or baseline) hazards (ie., the hazards that
govern the trajectory of risks at the individual level).
It may be of interest, for instance, to know whether the
underlying hazard is monotonically increasing even
though the observed population hazard first rises and
then declines. More generally, demographers are con-
cerned about whether observed trajectories of demo-
graphic rates over age or duration can be explained by
Jevel 1 accounts or level 2 accounts. Does the trajectory
observed for a population also hold for the individu-
als who comprise the population——or is the trajectory
attributable to compositional change? Frailty models
are designed to address this question.

Third, frailty models permit the use of ancillary
vital statistics data in the analysis. For example, as
briefly discussed above, it is possible to analyze
detailed data on some subset of a population {e.g.,
twins or those who participate in a survey) together
with the vital statistics data on the survival of the
general population. The combination of detailed data
on a subpopulation with survival data on the entire
population leads to more accurate siatistical estimates.
This combination seems natural and highly appropri-
ate for demographers,
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