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A stochastic differential equation model is developed to clarify the interaction of
debilitation, recuperation, selection and aging. The model yields various insights
about lingering mortality consequences of disasters such as wars, famines and
epidemics that may weaken the survivors. A key result is that debilitation and
selection are interdependent: debilitation that increases population heterogene-
ity will result in subsequent selection; selection, by altering the distribution of
population heterogeneity, will influence the impact of debilitating events.
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22 J. W. VAUPEL, A. I. YASHIN, AND K. G. MANTON

INTRODUCTION

Wars, famines, epidemics, and depressions debilitate as well as dec-
imate and the lingering morbidity consequences of a calamity may
elevate mortality levels for years afterwards (Kermack et al., 1934a
and b; Livi-Bacci, 1962; Forsdahl, 1977; Preston and van de Walle,
1978; Okuba, 1982; Horiuchi, 1983; Marmot et al., 1984; Waaler, 1984;
Lawrence et al., 1985; Fogel, 1986; Caselli et al., 1985 and 1986; Hearst
et al., 1986). Healing and recuperation, fostered perhaps by social
and public health programs, may restore the debilitated to normal
health. Furthermore, death may prune the population of the most
debilitated; this is the well-known process of selection in a heteroge-
neous population modeled by Beard (1963), Vaupel et al. (1979), and
others reviewed in Vaupel and Yashin (1985). As a result, death rates
among the recovered or selected survivors may decline to normal or
even below-normal levels.

The dynamic interaction of debilitation, recuperation, and selection
is complicated by aging. Disasters may have a stronger debilitating
effect at some ages than others; we will refer to this phenomenon as
vulnerability. The evidence in the various articles cited above suggests
that the childhood and adolescent years are particularly vulnerable
ones. Death rates tend to rise exponentially with age, so at older ages
there may not be time for full recuperation before death strikes. Selec-
tion accelerates with age because the rate of selection is proportional
to the level of mortality.

In this paper we make use of a stochastic differential equation
model, proposed by Woodbury and Manton (1977) and developed
by Yashin et al. (1985), to disentangle and clarify the evolving in-
terplay among debilitation, recuperation, selection, vulnerability, and
aging. We motivate the model by beginning with Gompertz's differ-
ential equation model and then adding complications step by step.
The completed model leads to a formula that decomposes the mor-
tality rate at any age into two additive components which we call the
baseline mortality rate and excess mortality rate. The relative change
with age of the excess mortality rate can, in turn, be decomposed
into four additive components which we call the forces of vulnerabil-
ity, debilitation, recuperation, and selection. To gain some insights
about when one of these forces predominates and about the inter-
actions among the forces, we present the results of some computer
simulations.
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DEBILITATION'S AFTERMATH 23

MODELS OF MORTALITY
Two disparate sets of mortality models have been developed, for dif-
ferent purposes and reasons. The first set of models, which might be
called descriptive or graduation models, were developed to describe
empirical mortality patterns without attention to underlying physi-
ological or environmental processes. As discussed by Keyfitz (1982),
such models are useful:

"To smooth the data",
"To make the result more precise",
"To construct life tables",
"To aid inferences from incomplete data",
"To facilitate comparisons of mortality", and
"To aid forecasting".

The multi-parameter curves of Thiele (1872) and Heligman and Pol-
lard (1980), the graduation methods of Reed and Merrell (1939) and
Greville (1943) and more recent spline approaches, the model life ta-
bles of Coale and Demeny (1966), Ledermann (1969), and Petrioli
and Berti (1979), and the relational transformations of Brass (1975),
Zaba (1979), and Ewbank et al. (1983) all fit into this category.

Mortality models of the second kind start with some biologically
plausible process that is hypothesized to determine the age trajec-
tory of mortality. Then the mortality curve is calculated from the
process, either by derivation of a formula or by numerical approxima-
tion. It is sometimes forgotten that Gompertz (1825) pioneered this
approach. As discussed in the next section, Gompertz started with a
differential equation that described the process of "indisposition" over
age and then derived his familiar mortality curve from this differen-
tial equation. The subsequent mortality models of Makeham (1867),
Armitage and Doll (1954), Strehler and Mildvan (1960), Sacher and
Truco (1962), Beard (1963), Woodbury and Manton (1977), Vaupel et
al. (1979), Economos (1982), and Moolgavkar (1986), all were based
on biologically justified processes on the individual level (e.g., in-
volving loss of vitality or accumulation of environmental insults) or
on the population level (e.g., selection resulting from heterogeneity
among individuals in their frailty).

In this set of process models the model proposed by Woodbury and
Manton (1977) is useful for our purposes. It includes the key elements
of debilitation, recuperation, and selection. In addition, it can be spec-
ified to include vulnerability (i.e., different mortality effects of disaster
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24 J. W. VAUPEL, A. I. YASHIN, AND K. G. MANTON

at different ages) and the lasting impact of temporary external con-
ditions, like wars and famines, on physiological indisposition. In the
following sections we elaborate the Gompertz model of human mor-
tality to derive a univariate form of the general Woodbury-Manton
model.

GOMPERTZ AND MAKEHAM

Following Gompertz (1825), suppose that "the average exhaustions of
a man's power to avoid death were such that at the end of equal in-
finitely small intervals of time, he lost equal portions of his remaining
power to oppose destruction," so

where fx(x) is the force of mortality at age x and a is some scaling
parameter. Given an initial value

the solution follows that

Kz) = /ioea*. (2)

A natural generalization of this approach is to let

. (3)

The parameter a$ represents the constant change in the force of mor-
tality, whereas aj is the proportional change. The solution is

If a0 < 0, but
ci = Ho H > 0

and letting
c

this is equivalent to Makeham's model:

(5)

These familiar models of Gompertz and Makeham are often ad-
equate for the analysis of mortality data. However, to separate the

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
e
r
m
a
n
 
N
a
t
i
o
n
a
l
 
L
i
c
e
n
c
e
 
2
0
0
7
]
 
A
t
:
 
1
1
:
3
3
 
1
0
 
M
a
r
c
h
 
2
0
1
0



DEBILITATION'S AFTERMATH 25

age process of deterioration from the age process of mortality a more
complicated model is needed.

EXHAUSTION AND AGING

To distinguish Gompertz's exhaustion process from the changes in
mortality due to aging, let Y(x) represent what Gompertz referred to
as "exhaustion", "indisposition", and "inability to withstand destruc-
tion". If the force of mortality fi(x) is inversely proportional to Y(x),
as Gompertz assumes, then there is little point in distinguishing indis-
position from the force of mortality. A more complicated relationship
might, however, make sense.

Suppose, for instance, that there is some optimal state where the
force of mortality is minimal; the forces of mortality increases as an
individual's condition deviates from this optimum, either in a posi-
tive or negative direction; the force of mortality is hardly affected if
the deviation is small but a large deviation results in a disproportion-
ately large increase in the force of mortality. Under these biologically
plausible suppositions, it may be reasonable to let

(i(x) = no(x) + \(x)Y2(x), (6)

where fJo(x) might be interpreted as the baseline force of mortality
under optimal conditions, where the indisposition Y(x) measures the
deviation in conditions from the optimal, and where the vulnerabil-
ity A(x) determines the level of excess mortality resulting from this
indisposition.

Two special cases are of interest. The value of \(x) might be con-
stant. This simplifying assumption implies that the greatest relative
increase in mortality levels produced by a given level of indisposition
occurs at the ages where the absolute level of baseline mortality is
lowest, an implication that may be plausible given the evidence on
the disproportionate impact of disasters on children and adolescents.

Alternatively, X(x) might be equal to Ho{x). Then

H(x) = no(x)(l + Y2(x)). (7)

In this case, Y2(x) measures excess risk in the usual proportional
hazards formulation.

If indisposition changes with age such that

Yo, (8)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
e
r
m
a
n
 
N
a
t
i
o
n
a
l
 
L
i
c
e
n
c
e
 
2
0
0
7
]
 
A
t
:
 
1
1
:
3
3
 
1
0
 
M
a
r
c
h
 
2
0
1
0



26 J. W. VAUPEL, A. I. YASHIN, AND K. G. MANTON

then Y(x) is given by a formula analogous to (4) and

2 . (9)

Depending on the signs of the parameters, this trajectory for the
force of mortality can take on a variety of shapes, even when fio(x)
and \(x) are constant and equal to /x0 and A. An interesting case in-
volves negative Yo and a.\ with positive a0, fio, and A. Given (8), the
positive value of ao might be interpreted as representing debilitation,
whereas the negative value of ai might be interpreted as representing
recuperation or homeostasis. These parameter values produce a tra-
jectory that is reminiscent of human mortality curves, with declining
mortality in infancy, rapidly rising mortality in middle age, and some
leveling off at advanced ages.

This model, however, implicitly assumes that there is no hetero-
geneity in frailty among individuals and hence no selection. To cap-
ture the effects of selection, some additional features have to be added
to the model.

FIXED FRAILTY: PURE SELECTION MODEL

The familiar heterogeneity model with constant, proportional
hazards,

H(x,z) = z[i(x), (10)

where p(x,z) is the force of mortality of individuals age x with frailty
z and \i(x) is the force of mortality for standard individuals with
frailty 1, is readily extended to:

/j(z,z) = no(x) + zfi(x), (11)

where frailty z could be identified with the square of indisposition
Y and where fio(x) is some baseline force of mortality. Then /x(z),
the observed force of mortality among surviving individuals, which is
given by

z)\X>x) (12)

where X denotes age at death, can be expressed as

Jl(x) = no(x)+ti(x)z(x) (13)

where J(x) is the average frailty of surviving individuals, defined by

z{x) = E{z\X>x). (14)
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DEBILITATION'S AFTERMATH 27

As shown by Vaupel and Yashin (1984a), the process of selection
resulting from the higher death rates of frailer individuals implies
that

Thus, Ji(x) increasingly deviates downward from /J(X) with age.
This model of fixed frailty incorporates both aging and selection

but it fails to explicitly capture debilitation and recuperation. Since
fixed frailty is assumed in many empirical studies (including Manton
et al., 1981 and 1986, Heckman and Singer, 1984, and Trussell and
Richards, 1985), it would seem useful to investigate what effect debil-
itation and recuperation might have and when these effects could be
ignored. Furthermore, interest in catastrophes requires attention to
debilitation and recovery. Thus it is appropriate to combine models
such that frailty both changes over age (and time) and varies across
individuals.

WHEN EVERYONE'S FRAILTY CHANGES
Consider, then, the model

n(x,Y) = no(x) + X(x)Y2(x), Y(0) = Yo, (16)

but now assume that YQ is a random variable that differs from individ-
ual to individual. Suppose that the change over age in indisposition
is described by

^ l = ao(x) + ai(x)Y(x), (17)

noting that now the parameters ao and ai may vary with age (and
time). To develop appropriate methods of analysis for this model, it
is useful to step back and consider* the arbitrary, perhaps random,
process Y(x) and not just the particular process in (17). Then

) , (18)

where, as before,

where X denotes age of death and where m(x) and 7(x) are the
conditional mean and variance of Y(x) among surviving individuals;
we use the notation 7(2:) rather than o"2(ar) to emphasize that 7(0;)
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28 J. W. VAUPEL, A. I. YASHIN, AND K. G. MANTON

is not a usual unconditional variance but a conditional variance. To
derive (18), note that

E(Y\x) \X>x) = E{(Y(x) - m(x) + m(x))2 | X > x)

= E((Y(x) - m(x))2 | X > x) + Em2(x)

+ E(2m(x)(Y(x)-m{x)) \X>x).

The first term in this expression is, by definition, 7(2:), the second
term is just m2(x), and the third term has a value of zero.

The problem now becomes a problem of determining m(x) and
7(x). For the process in Y{x) described by (17) it follows, as a special
case of the results in Yashin et al. (1985), that if YQ ls normally
distributed with mean mo and variance 70, then

U<i/

and

~^- = 2ai(x)-f(x)-2\(x)^(x)2. (20)

The evaluation of this pair of differential equations can be approxi-
mated by computer numerical methods. Interestingly, the conditional
distribution of Y{x) among the surviving at age x is normal (with
mean m(x) and variance i(x)).

The model developed above is based on the assumption that indi-
viduals' initial indispositions change deterministically over time. This
may be an appropriate assumption in studies focusing on evolving ex-
ternal conditions that affect all the individuals in a cohort more or
less the same way. However, the model fails to capture the impact of
turbulent disturbances that affect different individuals differently.

PURE STOCHASTIC INDISPOSITION

In many situations it may be reasonable to allow the indisposition of
one individual to change with age relative to the indisposition of an-
other individual. As individuals get sick, get well, stop smoking, start
drinking, etc., their relative indispositions may change, and famines,
wars, epidemics, and depressions may harm some individuals more
than others.

As a simple case of changing relative indispositions, consider the
process

= b(x)dW(x), (21)
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DEBILITATION'S AFTERMATH 29

where W is a Wiener (or Brownian motion) process and where b is a
parameter that may change over age (and time). This process is a con-
tinuous time, continuous path stochastic process with independent,
normally distributed increments such that

E(W(x2)-W(x1)) = 0 (22)

and
E(W(x2)-W(x1))

2==x2-x1. (23)

Thus, (21) implies that if an individual has some indisposition Y(xi)
at age xi, then the individual's indisposition at age x2 will be nor-
mally distributed with a mean of Y(xi).

Given this formulation, it can be shown, as a special case of the
results in Yashin et al. (1985), that if, as before, an individual's chance
of death at age x and indisposition Y is given by

fi(x,Y) = Lio(x) + \(x)Y2(x), (24)

then the conditional distribution of Y(x) among survivors at age x is
Normal with mean m(x) and variance -y(x) described by

dm{x) = 2 A ( a . ) m ( 3 . ) 7 ( x ) ( 2 5 )

dx

and

where, as before,

Jc(x) = no(x) + A(x)(m2(x) + 7(x)). (27)

PUTTING IT ALL TOGETHER

A model that includes the various elements discussed so far of chang-
ing mortality and vulnerability with age, heterogeneity among indi-
viduals in their innate indisposition, and both deterministically and
stochastically changing individual indisposition would be

Y2(x), (28)

and

dY(x) = [ao(x) + (ai(x) -a'^x^Yix^dx + b(x)dW(x) (29)
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30 J. W. VAUPEL, A. I. YASHIN, AND K. G. MANTON

with Y(0) normally distributed with mean m0 and variance 70 and
W(0) equal to zero. Note that two parameters ai(x) and a'^x) are
used in the formulation. The idea is that both these parameters are
non-negative and that ai(x) (along with ao(x)) respresents the effects
of debilitation whereas a\(x) represents the homeostatic healing and
recuperation. This is a simple expedient, but effective, at least for
exposition and for gaining insights into the effects of debilitation vs.
recuperation.

It follows from Vaupel et al. (1979) and Yashin (1986) that even in
the case of changing individual indisposition, the observed population
trajectory of the force ofi mortality is given by

Y)\X>x) (30)

and hence by
Jl(x) = ti0(x) + \(x)z(x) (31)

where ~z{x) is the average frailty (i.e., squared indisposition) at age x
among those surviving. As noted earlier, the result

(32)

holds for any process Y(x) such that

z(x) = F2(x).

When Y{x) is described by (29) and when Y(0) is normally dis-
tributed with mean m0 and variance 70, then, as shown by Yashin
et al. (1985),

dtnl x}
— =ao(x) + (ai(x) — a'!(x))m(x) — 2\(x)m(x)y(x) (33)

and
(x) - ai(x))7(x) + b\x) - 2A(x)7

2(x). (34)

The previous equations for dm(x)/dx and dj(x)/dx given in (19)
and (20) and (25) and (26) can be seen to be special cases of (33)
and (34).

Equations (33) and (34) can be solved in various special cases, but
in general the values of m(x) and 7(x) have to be calculated using
numerical approximation methods. This is readily done with the help
of a personal computer using difference equations to calculate the val-
ues of m(x +A) and 7(2: + A), for some sufficiently small increment
A, given the values of m(x) and 7(x).
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DEBILITATION'S AFTERMATH 31

A DECOMPOSITION OF THE FORCE OF
MORTALITY

The model leads to a two-stage decomposition of the force of mortality
Jt(a:). First, the baseline mortality rate fio(x) can be separated from
the excess mortality rate given by \(x)J(x). Second, formulas (32),
(33), and (34) imply that the relative rate of change in this excess
mortality rate can be decomposed into four components:

d\(x)J(x)
dx

() () () (x), (35)
X(x)z(x)

where

d\{x)

(36)

n M 0, ( \ . 2ao(*)m(s) + 6 ( s ) ( ,

pd(x) = 2ax{x) + m2{x)+i{x) , (37)

(38)

and

{ ^ L } (39)
In this decomposition pv(x) captures the impact of change over age
(or time) in vulnerability, Pd{%) captures the impact of debilitation,
pr(x) captures the impact of recuperation, and ps(x) captures the
impact of selection. Note that if do, a,\, and b- equal zero, there is no
debilitation and pd(x) equals zero. On the other hand, if A(x) is zero
or if the population is homogeneous (i.e., 7(1) equals zero) then there
is no selection and p3(x) is zero. We will refer to the p's as the forces
of vulnerability, debilitation, recuperation, and selection.

Because both pd(x) and p3{x) depend on m(x) and 7(1), the two
processes interact. There can be selection with no debilitation—if /J,Q,
ax, and b are zero and 70 is positive. This is the familiar case of a
heterogeneous population with fixed frailty. There can also be debili-
tation with no selection—if a0 or a\ are positive and both 70 and b are
zero. This is the case when the population is homogeneous in frailty
at all ages. But if frailty is changing in a heterogeneous population,
then debilitation at any age will affect selection, i.e., ps(x), at later
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32 J. W. VAUPEL, A. I. YASHIN, AND K. G. MANTON

TABLE 1
Alternative mortality regimes

Regime

i
ii
iii
iv
V

vi
vii
viii
ix
X

7o

0
1
0
1
1
0
0
0
1
1

6

0
0
0
0
0
0
0
0

.05
.5

V i

0
0
0
0
0
0

.05
0/.05

0
0

Parameters

Ao

100
100

1
1
1
1
1
1
1
1

during
ao

0
0

.1

.1
0
0
0
0

.05
.1

disaster
a i

0
0
0
0

.1
0
0
0

.05
0

6

0
0
0
0
0
1
1
1

.5

.5

Notes: In all instances mo is one, fto{z) is given by .0001e'lx + .01e~x, and fi(x,Y) is
given by no{x) + A(x)V2(:r)/zo, where A(z) equals 5Aoj»o(s) + -002 and where'zo is a
scaling factor equal to m ' + ~fo- This scaling insures that ~fi(0) is the same in all the
regimes. In regime viii, a\ is zero before age 20 and .05 afterwards. In all regimes, ao
and a\ are zero and Ao is one, except during a disaster. Disasters last from age 10
through age 19.

ages and selection at any age will affect debilitation, i.e., pd{x), at
later ages.

Given the formulation of the model, the force of recuperation affects
m(x) and i(x), as described in (33) and (34), and thus affects the
force of debilitation and selection. On the other hand, since the force
of recuperation, as given by (38), depends only on a'^x), this force is
not directly affected by the force of debilitation or selection. At some
level not explicitly included in the model there could, however, be
some linkage. For instance, a disaster that causes debilitation might
invoke social aid that increases the value of a[(x) and hence fosters
recuperation.

VARIETIES OF DISASTROUS EXPERIENCE

To gain some insights about the model, we wrote a simulation pro-
gram that runs on an IBM PC. Table 1 summarizes the parameters
of 10 mortality regimes that govern the life chances of a hypothetical
cohort as it ages over time. In every regime, ^0(2), the baseline force
of mortality, is assumed to be the same. The various parameters are
given in the table and in the notes to the table. The regimes were
selected to illustrate ideas rather than to replicate empirical observa-
tions.
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DEBILITATION'S AFTERMATH 33

Figure 1 presents eight pairs of mortality trajectories, labelled (i)
to (viii), that correspond to the first eight mortality regimes listed in
Table 1. In each case, the solid curve gives the trajectory when there
is no disaster and the dotted curve gives the trajectory when there is
a disaster. As noted in Table 1, a disaster starts at age 10 and lasts
through age 19.

Figure l(i) illustrates the consequences of a disaster in a mortality
regime where there is no heterogeneity, no debilitation, and no recu-
peration. The disaster comes and goes, with severe immediate effects
but no aftermath.

If there is heterogeneity in frailty in the population at birth, as is
the case in Figure l(ii), then both with and without a disaster, the
effects of selection reduce the level of observed mortality. A disaster
raises mortality levels and hence accelerates the death of frailer indi-
viduals. As a result, the increase in mortality rates during the disaster
is somewhat moderated. In addition, the level of mortality after the
disaster is lowered. Because selection now operates more rapidly in the
advantaged cohort, the two mortality trajectories gradually converge.

If the disaster raises everyone's indisposition by the same amount
and if the population is homogeneous, the case in Figure l(iii), then
the result of disaster is a permanent increase in the level of mortality.
If, however, the population is heterogeneous, as in Figure l(iv), the
increased force of selection after the disaster results in some conver-
gence in the mortality trajectories.

Figure l(v) also describes mortality trajectories for a heterogeneous
cohort, but now the disaster does not raise each individual's indispo-
sition by the same absolute amount but by the same proportion. The
disaster, in increasing the variance in indisposition among individu-
als as well as the level of indisposition, substantially accelerates the
selection process. The mortality trajectories, as a consequence, show
marked convergence.

The cohorts whose mortality is described in Figure l(vi) are both
initially homogeneous. The cohort affected by the diaster becomes
heterogeneous as a result of the disaster: the disaster can be thought
of a time of turbulence producing random changes in indisposition.
The selection caused by the acquired heterogeneity, coupled with the
existence of fortunate individuals whose indisposition is reduced dur-
ing the disaster, so markedly affects the subsequent mortality trajec-
tory of the stricken cohort that after age 70 or so this cohort has a
more favorable mortality experience.
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Force of
Mortality
(Log Scale)

Figure 1 li)

.001 -

J 1

I • • "

J I

Force of
Mortality
(Log Scale)

i I

20 40 60 80
Age

I I I I

20 40 60 80
Age

FIGURE 1 Varieties of disastrous experience. (See text for explanation.)
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Force of 1 _. , , ,
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Figure 1 (vi)

.001
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Force of
Mortality
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FIGURE 1 Continued
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As illustrated by these six figures, disasters can be captured ei-
ther by changes in the vulnerability function A or by changes in the
parameters of the indisposition process, a0, ai, or b. The lingering
mortality consequences of a disaster produced in any of these ways
can be moderated by homeostasis or recuperation, as represented by
the parameter a\. Figures l(vii) and (viii) illustrate this in the case
of the kind of disaster portrayed in Figure l(vi), a time of turbulence
that results in acquired heterogeneity.

If homeostasis operates from birth on, then, as shown in Figure
l(vii), the mortality curve for the cohort not suffering the disaster
is substantially lower than the curves shown in previous figures. The
effect of the homeostasis parameter is to gradually reduce everyone's
indisposition from its initial level of one toward the optimal level of
zero. A disaster that creates substantial heterogeneity increases the
level of mortality, but as a result of homeostasis (or recuperation)
there is a rapid convergence of the new mortality trajectory toward
the trajectory of the fortunate cohort.

In creating Figure l(viii) it was assumed that recuperation follows
a disaster, being produced both by natural physiological recovery and
by various social interventions. Hence, the cohort not afflicted by the
turbulent times of the disaster does not benefit from recuperation.
Its trajectory is the same as the trajectory for the advantaged cohort
in Figure l(vi). The afflicted cohort benefits so substantially from
the force of recuperation that its mortality trajectory falls below the
other cohort's trajectory less than twenty years after the disaster. The
effects of selection, recuperation, and random lowering of indisposition
for some fortunate individuals during the disaster combine to yield a
very favorable mortality trajectory from age 40 on.

DISENTANGLING DEBILITATION AND
SELECTION

As noted earlier, demographers for many years have been interested
in the effects of debilitation vs. selection. Confusion here is easy given
the intricate interaction of debilitation and selection. To gain some
insights into the nature of this interaction, it is useful to carefully
dissect the immediate and lingering effects of a disaster. Figure 2(i)
through (vii) provide an illustration for mortality regime ix in Table 1.
In this mortality regime, there is no homeostasis and the vulnerabil-
ity parameter Ao is constant and equal to one. These simplifications
facilitate comprehension of the effects of debilitation and selection
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DEBILITATION'S AFTERMATH 37

resulting from a combination of absolute, proportional, and random
changes in indisposition in a heterogeneous population.

Figure 2(i) displays the mortality trajectories with and without
the disaster. The effects of the debilitation caused during the disaster
and the selection following the disaster are substantial. Note that
the mortality trajectories converge, but that there is no crossover.
Differential selection necessarily produces some convergence, but it
does not have to result in a crossover (Vaupel and Yashin 1985).

Figure 2(ii) plots the force of debilitation, as denned by formula (37)
over age. For both cohorts, there is some debilitation before the dis-
aster, resulting from the random changes in indisposition produced
by the positive value of the parameter b. The strongest period of
debilitation is confined to the decade of the disaster, but there is
some debilitation thereafter produced by random changes in indispo-
sition. Since the value of the parameter 6 is constant after the disaster,
formula (37) implies that the increase in the force of debilitation is
attributable to the declining value of mean frailty (i.e., of m2 + 7 ) .
Similarly, the low value of the force of debilitation for the afflicted
cohort, especially in the years immediately following the disaster, is
atttributable to the high value of the mean frailty during this period.

As shown in Figure 2(iii), for both cohorts there is some selection
before the disaster, largely in infancy when the mortality rate is high:
this selection results from the initial heterogeneity of the population,
as implied by the positive value of the parameter 70 • Selection ac-
celerates during the disaster as population heterogeneity increases,
and selection continues to operate after the disaster, with increasing
force as the level of mortality increases with age. The high mortality
rate suffered by the afflicted cohort gradually reduces the difference in
mean frailty between the two cohorts: this differential selection pro-
duces the convergence with age in the forces of selection for the two
cohorts.

Figure 2(iv) displays the difference between the force of debilita-
tion and the force of selection for the two cohorts. When this differ-
ence is positive, it can be said that debilitation predominates; when
it is negative, selection predominates. For the cohort that does not
suffer the disaster, selection predominates at all ages, although the
forces of selection and debilitation are in rough balance (and are both
small) from childhood through age 40 or so. For the cohort that suf-
fers the disaster, debilitation predominates only during the decade of
the disaster, and, as a result of this debilitation, the force of selection
is substantial at all ages after the disaster. As this example makes
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B Figure 2(ii): Trajectories of / ) .
Force of 1 _. _. „,., ^. . , »_ Force of
Mortality 1 - ( " F,gure 2(0: Tra,ectorieSOf „ Debilitation .25
(Log Scale)

.001

.20

.15

.10

.05

J I

faxtx of
Selection

.20 -

.15

.10 -

.05 -

Figure 2(iii): Trajectories of p$ ^ D e b l . " ^ ^ 2 5

Minus Selection

H Figure 2(iv): Trajectories of p^ — Ps

_ i

-.25 J L
20 40 60 80

Age

FIGURE 2 Aspects of disaster. Figures 2(i)-(vii) display the trajectories of /i,
Pa, Pi~Pa, m, y, and m2 +7 , respectively.
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Mean 2
Indisposition

" Figure 2(v): Trajectories of M Variance

Indisposition

Mean
Frailty 5 r- Figure 2(vii): Trajectories of m + 7
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Age

eo

FIGURE 2 Continued
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transparent, selection should be thought of not as an alternative to
debilitation, but as a consequence of any debilitation that increases
population heterogeneity.

Figures 2(v), (vi), and (vii) show the change with age in m, the
mean level of indisposition, 7, the variance of indisposition, and 1,
the mean level of frailty (i.e., indisposition squared). Mean indispo-
sition falls somewhat during the first decade as a result of selection
in the initially heterogeneous population. For the afflicted cohort, the
mean almost doubles during the disaster but, as a result of rapid se-
lection, the mean falls below one again around age 40 and falls below
the mean for the advantaged cohort around age 60. Variance in indis-
position shows a similar pattern, reaching a peak of 8 for the afflicted
cohort, although without a crossover. As a result, the trajectory of
mean frailty, which equals m2 + 7, shows an analogous pattern for the
advantaged cohort of steady decline and for the afflicted cohort of a
sharp rise to a peak, this time close to 5, and then a somewhat less
rapid fall as the frail victims of the disaster die.

Figures 3(i) through (vii) provide a second set of illustrations of the
interactions of various factors in the mortality model. As discussed
above, the importance of what might be called a cohort's memory of
past disasters, as reflected in current and future mortality rates, is
reduced by selection and by homeostasis or recuperation. Stochastic
change in individuals' indisposition also leads to forgetfulness, because
the more turbulent these change are, the less correlation there will be
between an individual's indisposition at two different ages. To explore
this phenomenon, mortality regime x in Table 1 was used to derive the
diagrams in Figure 3. In this regime, b, the parameter of stochasticity,
is set at a value of .5 at all ages. The disaster is modeled by setting ao,
the drift parameter, equal to .1; this kind of disaster was previously
analyzed in Figures l(iii) and (iv).

Note in Figure 3(i) that in contrast to the trajectories in Figure
l(iii) and (iv) the mortality trajectory of the afflicted cohort is only
modestly higher, and only for a relatively short period, than the mor-
tality trajectory for the advantaged cohort. Also note that the two
mortality trajectories are qualitatively similar to previous mortality
trajectories: the substantial turbulence in this mortality regime is not
apparent in the trajectories of population force of mortality.

Figures 3(ii) and (iii) display the trajectories of the forces of debili-
tation and selection, respectively. Debilitation increases as a result of
the disaster and then falls below that for the advantaged cohort, for
the same reasons discussed earlier. What is new here is the very rapid
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MorWHty 1 ' r F i 9 " r S 3 l i > : T r a i e c t o r i e s O f *
(Log Scale)

Force of
Debilitation :tories of p .

.001

Force of
Selection .25 p

Figure 3(iii): Trajectories of p

Net Force
of Debilitation .25r - F j 3 ( v i ) : Trajectories of „„ - p .
Minus Selection as

20 40 60 80 20 40 60 80

Age Age

FIGURE 3 Aspects of mortality in a turbulent regime. Figures 3(i)-(vii) display
the trajectories of ~p, p&, pa, p& — ps, m, 7, and m2 + 7 , respectively.
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M e a n 2 T Figure 3(v): Trajectories o fm ' Variance in 6 r - Figure 3(vi): Trajectories of y
Indisposition

1.5

Indisposition

80

Mean
Frailty Figure 3lvii): Trajectories ofm +

FIGURE 3 Continued
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increase in the force of debilitation with age, although the underlying
cause of this, the decline in the value of mean frailty, is the same as
discussed before. The force of selection also rises very rapidly with
age, and for both the force of debilitation and selection the afflicted
and advantaged cohort's trajectories quickly converge.

As shown in Figure 3(iv), the force of selection manages, after age
20 or 30, to keep ahead of the force of debilitation, so that the rapid
increase in both forces results in a balance that somewhat favors se-
lection. The rapid increase in the force of selection can be interpreted
as resulting from the rapid increase in the force of debilitation, but
the force of selection does not lag behind the force of debilitation, but
stays ahead of it.

The strength of the force of selection drives the mean value of indis-
position to zero, as shown in Figure 3(v). The variance in indisposition
rises to a peak but then falls off as the force of selection exceeds the
force of debilitation, as shown in Figure 3(vi). There is only a single
curve in this figure because the disaster does not affect the variance
in indisposition but only the level of indisposition. The combination
of these two trajectories, in the form of m2 +7 , produces the trajec-
tories for mean frailty displayed in-the final figure, Figure 3(vii). In
this turbulent mortality regime, memory of the disaster is no longer
apparent after age 50.

EXTENSIONS AND OTHER APPLICATIONS

The model of mortality presented and illustrated above can be ex-
tended in various ways and applied to other kinds of population prob-
lems. This section adumbrates a few possibilities.

Our concern here has been conceptual advance and insight, rather
than statistical estimation and inference. Elsewhere, however, we dis-
cuss how Woodbury-Manton stochastic models can be used in em-
pirical studies (see, e.g., Woodbury et al., 1979, Manton and Stal-
lard, 1984, and Yashin et al., 1985). In many of these applications it
is appropriate to distinguish several different, interacting stochastic
processes related to various physiological, behavioral or environmen-
tal factors that may be continuously observed, partially observed, or
unobserved. Fortunately, the univariate-process model described here
is readily generalized to a multivariate-process model with various
kinds of data (Woodbury and Manton, 1977, Yashin et al., 1985).

Our focus has been on disasters, but the model could also be used
to study other aspects of mortality, including the typical shape of
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mortality trajectories. A remarkable feature of most human mortal-
ity curves is the bump in mortality rates, usually centered around age
20 or 25. In developed countries today this bump is greater for males
than for females and can be largely explained by violent deaths result-
ing from accidents, homicide, and suicide. But a bump also appears in
mortality trajectories of cohorts born more than a century ago and in
mortality trajectories for less developed countries (see, e.g., Preston
et al., 1972). The model presented here can be specified to produce
such a bump. By choosing less extreme parameter values, the very
prominent bumps in some of the figures discussed above can be re-
duced to realistic size. It seems plausible that at least some of the
excess mortality bump is caused by a kind of debilitation that occurs
during the adolescent and early adult years as a result of individuals
being confronted with environments that they are not fully prepared
to deal with. For various physiological, behavioral, and environmen-
tal reasons, as an individual reaches maturity a gap may develop be-
tween external demands and internal capabilities and inclinations, a
gap that for most individuals is reduced with age, partially as a result
of learning and the acquisition of wisdom and caution. It may prove
informative to apply the kind of stochastic model presented here to
analyze the bump in mortality in various countries and times.

In addition, the model could be used to analyze the effects of life-
time deprivation and the effects of progress over time in reducing
mortality levels. For a wide variety of different specifications of the
model, the mortality trajectory of a disadvantaged cohort will con-
verge toward the trajectory of an advantaged cohort. Similarly, equal
rates of progress at all ages in reducing the underlying force of mor-
tality on the individual level will result in declining rates of progress
with age in reducing the observed, population force of mortality. Thus,
there will appear to be convergence between the mortality trajectory
of a cohort not benefitting from mortality progress and the trajectory
of a cohort that does benefit. Essentially what is needed to produce
these patterns of convergence is a higher level of mortality, at least
before some age, for the disadvantaged cohort and some heterogeneity
in frailty, either innate or acquired with age.

This brings us to the question of how useful fixed frailty models
are. Much of the theoretical work on heterogeneous population (as re-
viewed by Vaupel and Yashin 1985) as well as nearly all the empirical
work (including Manton et al., 1981 and 1986, Heckman and Singer,
1984, and Trussell and Richards, 1985), has resorted to the simplifying
assumption that an individual's frailty (or relative risk) does not vary,
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at least over the period being studied. That is, frailty is not necessarily
assumed to be fixed from birth, but frailty is assumed to be constant
after, say, age 65 if the analysis focuses on mortality rates at older
ages. This may be realistic. Furthermore, as our model suggests (and
as discussed by Vaupel and Yashin, 1985), the assumption of fixed
frailty may be a reasonable expedient if everyone's frailty changes by
roughly the same absolute or proportional amount: much of this ef-
fect can be captured in the baseline force of mortality /J.Q{X). Finally,
if the action of homeostasis is to quickly restore individuals to their
base level of frailty, deviations from this base may not be significant.

The key question then is whether substantial stochastic changes
in frailty influence mortality trajectories in a way that cannot be
captured by models that assume fixed frailty. Our model, and the
various analytical explorations we have engaged in using it, indicate
that debilitation associated with stochastic changes in frailty produces
subsequent selection that helps counter-balance the effects of the de-
bilitation. Furthermore, the main qualitative results in the theory
of heterogeneity, concerning mortality convergence and the deviation
of population trajectories from underlying individual trajectories, re-
main valid in most cases even given substantial stochastic debilitation.
Nonetheless, stochastic changes in frailty can, as illustrated by the
figures presented above, produce mortality trajectories quite different
from the trajectories produced when frailty is fixed. Thus, mortality
analysts, especially in their empirical research, may find it useful to
employ a stochastic-process model when they have reason to believe
that individual frailty may be changing turbulently.

DISCUSSION

Does a cohort remember mortality past? Are current and future mor-
tality rates experienced by a cohort influenced by previous mortality
rates or, more directly, by previous rates of morbidity and depriva-
tion? Is there, in short, a cohort effect distinct from age and period
effects, and if so, what is the nature of this effect? These questions
have long been important in demographic thought and remain of cen-
tral concern (Ryder, 1965; Hobcraft, Menken, and Preston, 1982). The
model presented here is useful in conceptualizing and comprehending
the complex nature of possible cohort effects and age-period-cohort
interactions. The underlying age-pattern of mortality is captured by
the baseline mortality function, HQ. The vulnerability, drift, homeosta-
sis, and stochasticity parameters capture effects that occur at specific
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ages or times. Because our focus was on a single cohort, we did not
distinguish between age and time in our analysis, but it is readily pos-
sible to explicitly make these parameters functions of age and of time.

Our model and illustrative results suggest that it may not be pro-
ductive to conceptualize or model age, period, and cohort mortality
effects as three independent factors and that it is particularly ques-
tionable to assume that these effects are not only independent but
also constant for each age, period, or cohort. Time-specific incidents
of high mortality or morbidity probably affect cohorts of different
ages differently and these incidents probably have lingering conse-
quences that gradually decay as the result of recuperation, selection,
and stochastic changes in individual frailty. Furthermore, debilitation
and selection should not be thought of as independent factors. De-
bilitation that increases population heterogeneity will result in sub-
sequent selection; selection, by altering the distribution of population
heterogeneity, will influence the impact of debilitating events.

Correctly conceptualizing these factors is important for demograph-
ic theory and for understanding historical patterns of mortality. In ad-
dition, appropriate models of how cohorts remember past mortality
and morbidity can contribute to public-health decisionmaking. If, for
instance, high levels of morbidity in childhood can be linked to high
levels of mortality at older ages, then efforts to reduce morbidity (and
associated mortality) in childhood will have the double benefit of an
immediate effect and a delayed effect. Understanding the magnitude
of lingering mortality effects can thus help in determining the bene-
fits of alternative public-health interventions and in targeting these
interventions to achieve maximum benefits.
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