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Abstract—Life table methods are developed for populations whose members
differ in their endowment for longevity. Unlike standard methods, which
ignore such heterogeneity, these methods use different calculations to con-
struct cohort, period, and individual life tables. The results imply that
standard methods overestimate current life expectancy and potential gains in
life expectancy from health and safety interventions, while underestimating
rates of individual aging, past progress in reducing mortality, and mortality
differentials between pairs of populations. Calculations based on Swedish
mortality data suggest that these errors may be important, especially in old

age.

INTRODUCTION

That individuals differ substantially in
their endowment for longevity is well
known (e.g., Strehler, 1977; Keyfitz,
1978), yet currently used life table meth-
ods ignore this heterogeneity. A handful
of recent papers (e.g., Shepard and Zeck-
hauser, 1975, 1977; Tolley et al., 1978;
Manton and Stallard, 1979) have focused
on the effects on human survival of differ-
ences in individual susceptibility to spe-
cific causes of death. In this paper, life
table methods are developed for popu-
lations whose members differ in their gen-
eral susceptibility to all causes of death.
The methods are then used to explore the
impact of such heterogeneity in frailty on
the dynamics of total mortality.

The model yields insights with in-
triguing and potentially important impli-
cations:

(1) Mortality rates for individuals may
increase faster with age than observed
mortality rates for cohorts.

(2) The life expectancy of those whose

lives might be saved by some health or
safety intervention may be less than cur-
rently estimated.

(3) Past progress against mortality may
be underestimated, and as a consequence,
predictions of future progress against
mortality may be too low.

(4) Current methods of computing life
tables may confound past mortality expe-
riences with current ones. Indeed, if cur-
rent mortality levels remained unchanged
mortality rates presented in life tables, as
currently calculated, might increase in the
future.

(5) Heterogeneity in frailty may be a
factor in observed declines and reversals
with age of mortality differentials between
pairs of populations.

This paper is organized into four sec-
tions. The first contains a model of indi-
vidual differences in frailty. Frailty is de-
fined and then assumptions are made
concerning the distribution of frailty in
populations.

The second section of the paper ex-
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plains how mortality rates for individuals
at any specified level of frailty can be esti-
mated on the basis of the mortality rates
calculated for the cohort to which the in-
dividuals belong. Next, as an illustration,
individual and cohort mortality rates are
compared using data for Swedish females
born in 1875. It is argued that it is more
informative to measure historical progress
in reducing mortality on the basis of
changes in the force of mortality for indi-
viduals at specific levels of frailty rather
than changes in cohort mortality rates.
Swedish mortality data are again used to
illustrate the empirical differences be-
tween these two kinds of measures.

The third section of the paper focuses
on period life tables. If heterogeneity in
frailty is substantial, standard life table
methods will not correctly represent the
current pattern of mortality. We propose
a method for calculating adjusted period
life tables that do reflect current mortality,
given population heterogeneity. The stan-
dard and adjusted period life tables are
compared for Swedish females in 1975.

In the final section of the paper, we
extend the methodology to analyze mor-
tality differentials between two popu-
lations. To illustrate the effect of popu-
lation heterogeneity on such differentials
we contrast population versus individual
mortality rates for Swedish females and
males in 1975.

A MODEL OF INDIVIDUAL DIFFERENCES
IN FRAILTY

The Definition of Frailty

Let u,(x, y, z) be the force of mortality
for an individual—in population group i,
at exact age x, at some instant in time y,
and with a “frailty” of z. Demographers
have traditionally studied how mortality
rates vary across populations, by age, and
over time; what is unusual about this for-
mulation is the inclusion of a fourth vari-
able z to allow for individual differences in
mortality rates. This ‘frailty” variable
could be defined in numerous ways; we
have chosen to define it in terms of the
following relationship:
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#t(x’ y’ z)//"t(xs y’ Z’) = Z/Z’, (la)
or, alternatively,
m(x, p,2) =z - plx, p, 1) (1b)

An individual with a frailty of 1 might be
called a “standard” individual. Then, an
individual with a frailty of 2 is twice as
likely to die, at any particular age and
time, as the standard individual; an indi-
vidual with a frailty of 1/2, on the other
hand, is only one-half as likely to die.

We chose to define frailty in terms of
the force of mortality, u, rather than the
age-specific probability of death, ¢,, be-
cause of two major difficulties in defining
frailty in terms of ¢,. First, since g, is
bounded above by one, the range of z
would necessarily also be bounded above.
Second, ¢, is known to be a nonlinear
function of the size of the age interval
used. Consequently, we will develop the
model in terms of u, and later give the
necessary equations to calculate the g,’s
for life table construction.

Note that the definition of frailty as-
sumes that each individual is born at a
certain level of relative frailty and stays at
this level all his or her life. The definition
does not imply, however, that individuals
at the same level of frailty are identical—
even if they are contemporaries from the
same population. The variable u merely
measures the likelihood of death; the ex-
act moment of death will be determined
by various individual differences beyond
population group, age, date of birth, and
frailty level. Frailty, as used here, is just
one component—and a very special age-
invariant one—of an individual’s complex
makeup.

The assumption that frailty is constant
for individuals is a first approach to ac-
knowledging, in life table computations,
the known heterogeneity in populations.
A more complete model would recognize
(a) that frailty is probably a result of a
large number of factors, (b) that frailty is
probably not constant for life, (c) that
frailty should probably include differen-
tial susceptibility to cause-specific mortal-
ity, and (d) that mortality due to chronic



Impact of Heterogeneity on the Dynamics of Mortality

diseases (in particular) is the end result of
a process which may involve different
components of frailty at different stages.
Such a model has been proposed by
Woodbury and Manton (1977) for the
analysis of longitudinal data on coronary
heart disease. The mathematical com-
plexity and the lack of appropriate data
(e.g., individual medical records) preclude
the use of such a model in demographic
analysis of population mortality. To the
extent that the biological basis of many
chronic diseases is associated with in-
trinsic age-related changes and to the ex-
tent that most mortality occurs at ad-
vanced ages, it seems plausible that even
given the inadequacies of the assumption
that frailty is constant, its use is a reason-
able first step in modifying standard life
table techniques.

For simplicity, subscripts and argu-
ments will be dropped throughout this pa-
per whenever they are not essential to con-
vey meaning. For example, u,(x, y, z) will
generally be written as u(z) and u,(x, y, 1)
as u(1) or just u. Following this conven-
tion, equation (1b) reduces to:

wz) =z p. (1c)

Let H,(x, y, z) be the cumulative hazard
of mortality an individual in some popu-
lation group i of frailty z who is born at
time y — x will face up through age x.
That is, let

H(x,y,z2) = j; w(t,y — x +t, 2)dt.
(2a)

Clearly, using the convention of simplified
notation,

H(z)=z-H. (2b)

Define s,(x, y, z) as the probability that
an individual will survive to age x. It is

well known that
s =eH,

3)

Consequently, it follows from equation

(2b) that
s(z) = 5%,

“

(where s = s(x, y, 1) for some x and y).
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Thus if a standard individual has a 50
percent chance of surviving to some age,
an individual with a frailty of 2 will only
have a 25 percent chance of surviving to
this age and an individual with a frailty of
3 only a 12.5 percent chance.

The Distribution of Frailty

Let i, (x, y) be the force of mortality for
a cohort of individuals from population
group i at age x at time y. That is, let

fi(x, ) =f0 wi(x, y, 2) * fa(x)dz. (5)

where f;(z) is the p.d.f (probability den-
sity function) of frailty at age x among the
surviving individuals in the cohort. (That
the force of mortality for the cohort is
indeed the same as the average force of
mortality for the surviving individuals in
the cohort is proven in the fourth section
of the Appendix.) Average frailty in the
cohort, Z, is defined by

Zx, y) = _/:Dz - fo(2)dz.

Consequently, it follows from the defi-
nition of frailty in equation (1b) that

Bdx, y) = plx, y, 1) - Z(x,p), (6a)
or, in simpler notation,
B=p- i (6b)

Frail individuals with high values of z
will tend to die first. Thus, 7, the average
frailty of the surviving cohort, will decline
with age. Consequently, equation (6b) im-
plies that the force of mortality for indi-
viduals increases more rapidly than for
the cohort the individuals belong to: in
this sense, individuals “‘age faster” than
cohorts. An intriguing implication is that
studies of human aging based on cohort
mortality data may be systematically
biased or based on erroneous functional
forms.

The precise nature of the relationship
between individual and cohort aging de-
pends on the distribution of frailty among
individuals. This paper assumes that
frailty at birth is gamma distributed, with

pd.f.:
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Jo(z) = N* - 271 - emAz/T(k),  (7)

where A and k are the parameters of the
distribution. The mean and variance of a
gamma variate are given by:

7 =k/\ (8a)

and
g = k/A% (8b)

Figure 1 plots the shape of gamma p.d.f.’s
for three values of k that will be used in
the empirical sections of this study: k = 1,
4, and 8. These three values were selected
because they represent a broad range of
distributions of frailty. A value of k of 1
may at first seem extreme, but some em-
pirical research on mortality crossovers
(Manton et al., 1979) suggests values of k
around 1 and some empirical work with
certain diseases, e.g., lung cancer (Manton
and Stallard, 1979) suggests values of k
much less than 1. In each case, the mean Z
is set equal to 1, so that A = k and ¢?
= 1/k.

The gamma djstribution was chosen be-
cause it is analytically tractable and read-
ily computable. It is a flexible distribution
that takes on a variety of shapes as k
varies: when k = 1, it is identical to the
well-known exponential distribution;
when k is large, it assumes a bell-shaped
form reminiscent of a normal distribution.
Frailty cannot be negative and the gamma
distribution is, along with the log-normal
and Weibull distribution, one of the most
commonly used distributions to model
variables that are necessarily positive. At
least one other study of heterogeneity
(Shepard and Zeckhauser, 1977) also uses
the gamma distribution for these various
reasons.

It turns out, as shown in the first section
of the Appendix, that the assumption that
frailty at birth is gamma distributed yields
some useful mathematical results, includ-
ing:
(1) Frailty among the survivors at any
age x is gamma distributed with the same
value of the shape parameter k as at birth.
The value of second parameter, however,
is now given by
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A(x) = A + H(x). (%a)

The mean frailty of the survivors is there-
fore given by

i(x)=2-k/(k+ z- H(x)), (9b)

where 7 is the mean frailty of the cohort at
birth (as given in equation 8a). When k =
1 and Z, which is essentially an arbitrary
scaling value, is set equal to 1, equation
(9b) reduces to

Z(x) = 1/(1 + H(x)). (9¢)

This equation clearly illustrates how the
average frailty of a cohort decreases as the
cumulative hazard suffered by the cohort
increases.

(2) Frailty among those who die at any
age x is also gamma distributed, with the
same parameter A(x) as among those sur-
viving to age x but with shape parameter k
+ 1. This implies that the mean frailty of
those who die, Z’, is somewhat greater
than the mean frailty of the survivors:

Z'(x) = Z(x) - (k + 1)/k. (10)

This result may prove useful in refining
calculations of the benefits of programs to
“save” lives (or, more precisely, to delay
deaths).

Computing Individual Life Tables from Co-
hort Life Tables

If frailty is gamma distributed, a simple
formula (derived in the second section of
the Appendix) relates the force of mortal-
ity for an individual at any age x and any
level of frailty z to the cohort force of
mortality:

ux, z) = @(x) - (2/20) - (S(x)~* (11)

where 7(0) is the mean frailty of the cohort
at birth and §(x) is the proportion of the
cohort surviving at age x. For theoretical
purposes equation (11) defines the rela-
tionship between individual and cohort
mortality, but it is inconvenient for empir-
ical calculations since mortality rates are
published in terms of cohort age-specific
probability of death, §,, rather than co-
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hort force of mortality i(x). Fortunately,
it is possible (as shown in the Appendix)
to compute ¢.(z), the age-specific proba-
bility of death for an individual of frailty
z, from data on cohort survival, §,:

ng=(z) = 1 — exp{—k - (2/2(0))
(Blx + m)~VE = S(x)VR)} (12)

And §(x) can be calculated, at any exact
age x, from cohort age-specific mortality
rates:

$(0) = 1,
and
s(x) = xI:I (I=4) x21. (13)

The parameter z(0), which measures the
mean frailty of the cohort at birth, is es-
sentially just a scaling factor that, for
most purposes, can simply be set equal to
one. That leaves a single parameter k,
which measures the degree of hetero-
geneity in frailty: the greater k, the less
heterogeneity. Given an estimate of k,
equations (12) and (13) allow for the
translation from published cohort life ta-
bles to life tables for individuals at any
specific level of frailty.

Cohort vs. Individual Mortality for Swed-
ish Females

To illustrate the nature of the difference
between cohort and individual mortality,
it is useful to look at some empirical re-
sults. We decided to base the empirical
calculations in this paper on data for
Swedish females and males because high
quality mortality data are available for
nearly two centuries for these popu-
lations. Since the results presented here
are intended to be illustrative rather than
definitive, we have relegated discussion of
the sources of these data and various in-
terpolations and calculations performed
on them to a separately available working
paper (Vaupel et al., 1979).

Figure 2 compares cohort mortality
rates with mortality rates for individuals
of standard frailty (i.e., z = 1), at three
values of k: kK = 1, 4, and 8. The mortality
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rates pertain to Swedish females born in
1875.

Figure 1 plotted the gamma p.d.f. for
these three values of k. When k is infinite,
there is no variablility in frailty and co-
hort and individual mortality rates are
identical. ,

Note in Figure 2 that as k increases (i.e.,
as variability in frailty decreases), mortal-
ity rates for standard individuals become
more like the observed cohort rates. Also,
note that the effects of selection increase
with age. The most striking feature of
these plots is the rapid increase in mortal-
ity rates when k = 1, 4, or even 8. This
implies that if heterogeneity in frailty is
substantial, the maximum life span of an
individual of a given frailty is well deter-
mined within a few years.

Figure 3 compares cohort mortality
rates, ¢, with individual mortality rates, g,
for individuals at four levels of relative
frailty: z = 1/4, 1/2, 1, and 2. In calcu-
lating each of the four individual mortal-
ity curves, k was assumed to equal 1. The
curves, as before, are based on estimates
of the mortality experience of Swedish fe-
males born in 1875.

The four individual mortality curves
plotted in Figure 3 clearly illustrate the
effect of relative frailty on individual mor-
tality. The manner in which the cohort
mortality curve cuts through the individ-
ual curves at lower and lower values of
frailty demonstrates the fact that as death
selectively removes the relatively frail, the
average frailty of a cohort decreases. Co-
hort mortality rates thus increase less rap-
idly than mortality rates for any individ-
ual in the cohort.

How Much Progress Has Been Made in
Reducing Mortality?

Over the last century or two, mortality
rates at most ages have declined at the
same time that the proportion of cohorts
that reach any particular age has in-
creased. Customary measures of progress
consider only changes in cohort mortal-
ity—these measures ignore increases in
survivorship. Consequently, to the extent
that heterogeneity in frailty is significant,
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progress against mortality is being under-
estimated.

Instead of measuring progress in terms
of cohort mortality rates, it may be more
appropriate to measure such progress in
terms of the force of mortality for stan-
dard individuals. Table 1 compares these
two approaches by measuring Swedish
mortality progress from 1875 to 1975 (for
females) in terms of the likelihood of
death at various ages, under different as-
sumptions about heterogeneity, namely,
k=1,4,8, and .

In the table, mortality rates in 1875 and
1975 are measured, as is customary, in
terms of ¢, but progress against mortality
is measured not by the ratio ¢(1875)/
q(1975) but rather by the ratio u(1875)/
w(1975), where the values of u are esti-
mated values for mid-year, (i.e., u is esti-
mated by H(x+1)—H(x)). The ratio used
seemed more appropriate for two reasons:

(1) The definition of u, as given in equa-
tion (1a), implies that

w(x,1875,2)/u(x,1975,z) =
w(x,1875,2')/u(x,1975,2"),

at any age x, for any pair of frailty values
z and Z'. Thus, the ratio of the u’s mea-
sures progress against mortality at any
level of frailty: this is not true for the ratio
of the ¢’s.

(2) In youth and middle age, when u
and ¢ are close to zero, u approximately
equals ¢; in old age, however, u, which is
not bounded by 1, can greatly exceed gq.
As a result, progress that substantially re-
duces u may have much less effect on g.
For example, consider a reduction in u
from 2 to 1: if these values of u stayed
constant over the course of a year, ¢
would only be reduced from 0.86 to 0.63.
We felt that a substantial reduction in the
likelihood of death at any point in time (as
measured by u) did indeed represent sub-
stantial progress against mortality.

Note in Table 1 that at any age and
value of k progress for individuals is
greater than the synthetic measure of
progress based on the cohort force of
mortality. The relative difference is strik-
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ing in old age with substantial hetero-
geneity in frailty. For example, with k=1,
the force of mortality for individuals aged
84 in 1875.was 8.1 times greater than in
1975, although the force of mortality for
the cohort was only 60 percent greater.
Even for k=8 the force of mortality for
individuals aged 84 in 1875 was twice as
great as in 1975.

Also note that for cohorts the ratio of
the force of mortality in 1875 to the force
of mortality in 1975 declines dramatically
with age, but for individuals the decline is
less. Indeed, for the extreme case of k=1
the amount of progress made in reducing
mortality for individuals increases after
age 60. It may be, contrary to assertions
made on the basis of cohort mortality
data, that considerable progress has been
achieved in reducing the force of mortality
in old age.

Such progress has not resulted in large
declines in g, or gains in life expectancy
2, because the values of u in old age
remain quite high. For example, the eight-
fold reduction, when k=1, in the force of
mortality at age 84 represents a decline for
an individual of standard frailty from a
force of mortality of 4.2 to the still sub-
stantial level of 0.52. As indicated in the
table the corresponding values of g fell
only by roughly a factor of 2 from about
0.98 in 1875 to about 0.41 in 1975. If, over
the course of the next century, the force of
mortality for individuals at age 84 could
again be reduced by a factor of eight, the
force of mortality would fall from 0.52 to
0.065. The corresponding ¢’s would then
show a striking decline—from 0.41 to only
0.063.

The belief is widely held that progress
against mortality in old age has been and
will continue to be slow. These calcu-
lations suggest the possibility that this be-
lief is overly pessimistic.

PERIOD LIFE TABLES

Determining Current Mortality Rates

What if progress in reducing mortality
ceased? That is, suppose that
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u(x,y,2) = u(x,)%z2) , all x,
all z,all y > »°,

where )° is the point in time when prog-
ress ceases. In such a steady-state situa-
tion, the future values of cohort mortality
rates (as measured by 4 or § will, surpris-
ingly enough, increase to levels greater
than their current levels. ,

To see this, let & and § represent the
values of ¢ and § in the long run. It follows
from equation (11) that

i=p- 0 -3~ (14)

Solving equations (11) and (14) for u
yields, respectively,

u = i/(Z(0) - §'%)
and
u = @/(Z(0) - 3v%). (15)

Equating the right-hand side of these
equations and solving for g then yields:
f= - (/5

This equation makes apparent the rela-
tionship between i, the currently observed
cohort force of mortality, and f, the co-
hort force of mortality at current mortal-
ity rates, i.e., the cohort force of mortality
that would be eventually observed if cur-
rent levels of mortality remained un-
changed. In particular, to the extent prog-
ress has been achieved in the past in
reducing mortality rates, a greater propor-
tion of individuals will survive to any par-
ticular age than before, i.e., § will be
greater than §. As a result, future popu-
lations at any age will tend to be frailer on
average than current populations. The
equation indicates that unless future prog-
ress in reducing mortality rates is suf-
ficient to counterbalance this effect, future
mortality rates will risse—even if some
progress is actually being made. As in
Lewis Carroll’'s Through the Looking
Glass, it may take “all the running you
can do to keep in the same place.”

Adjusted Period Life Tables

Period life tables are designed to repre-
sent current patterns of population mor-
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tality. Standard life table methods con-
struct period life tables according to the
same basic set of equations as cohort life
tables. In particular, period (and cohort)
life tables are based on the cohort age-
specific probabilities of death, the §,’s. As
indicated above, however, the frailty hy-
pothesis suggests that the values of g(x)—
and hence the values of ¢, as well—are
really a mixture of current and past mor-
tality experiences. Thus the values of ¢,
not 4, are the correct mortality rates for a
period life table, i.e., the mortality rates
that a newborn cohort would experience
as it aged if current patterns of mortality
remained unchanged.

As shown in the Appendix, it is possible
to compute g, on the basis of the follow-
ing formula:

ndx = 1 — {1 + (§(x)/3(x))"*
AL = aga)® =1 | (16)

The values of §, can be obtained from
standard period or cohort life tables and
values of cohort survivorship, §(x), at any
exact age x, can be calculated from cohort
life tables as indicated in equation (13).
The values of §(x), which represent period
survivorship and thus are analogous to
the values often designated by £, or {(x),
can be iteratively calculated as follows:

5(0) = 1,
and
5(x) = 3(x—1) - (1=Gx-y), x = 1. a7

Table 2 illustrates the difference it
would make to base period life tables on §
rather than g. The table presents four al-
ternative estimates of the life expectancy
of Swedish females in 1975, as currently
calculated (under the implicit assumption
that k = «) and as adjusted for k = 1, 4,
and 8. Note that the statistics in this table
pertain not to the standard individual but
to the entire population. The statistics in-
dicate that life expectancy at current mor-
tality rates may be overestimated by cus-
tomary life table calculations and that this
overestimation becomes more significant
as heterogeneity increases.
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Table 2.—Population Life Expectancy for Swedish Females at 1975 Mortality Rates, Under Various
Assumptions About Heterogeneity

Currently
Calculated: Adjusted: Adjusted: Adjusted:

Age k= k=1 k=4 k=38

0 78.15 76.36 77.52 77.81

5 73.90 72.09 73.26 73.55
10 68.98 67.16 68.33 68.63
15 64.07 62.25 63.42 63.72
20 59.20 57.37 58.55 58.84
25 54.30 52.48 53.65 53.95
30 49.43 47.60 48.78 49.07
35 44,59 42.76 43.93 44,23
40 39.80 37.97 39.15 39.45
45 35.09 33.26 34.44 34.74
50 30.49 28.67 29.84 30.14
55 26.03 24,22 25.38 25.68
60 21.70 19.92 21.05 21.34
65 17.55 15.83 16.91 17.20
70 13.73 12.10 13.09 13.38
75 10.34 8.86 9.73 10.00
80 7.57 6.33 7.00 7.24
85 5.38 4,41 4.85 5.06
90 3.81 3.10 3.34 3.52
95 2.58 2.01 2.16 2.30
100 1.93 1.40 1.50 1.62

COMPARISON OF TWO HETEROGENEOUS  cross-over of mortality differentials might
POPULATIONS be at least partially caused by decreases in

In addition to being useful in under- the average frailty of a population cohort

standing patterns of mortality within a at latcrbagcs as lfra1ler members are re-
single population, the hypothesis of heter- moved by mortality.

ogeneity in frailty may explain some puz- To see this, consider two cohorts for
zling anomalies in period mortality differ- which the cohort force of mqrtahty_ls de-
entials between populations. Variation in  ScTibed by a series of values 4, and i, and
the force of mortality in youth or middle the force of mortality for individuals in
age is much more substantial across coun- the cohorts by a series of values u, and p,.

tries and various population groups than Equation (1 l? implies that at any age and
variation among the elderly. For most point in time:

pairs of populations—e.g., for U.S. whites i,/41, = (ua/;) * (2:(0)/7,(0))

vs. blacks, for U.S. males vs. females, or ke ik

for Americans vs. Swedes—mortality dif- *(F/5M). (18a)
ferentials tend to decline and even reverse . . .

with age (see Thornton and Nam, 1972; In the special case where z,(0) = 7,(0) and
Nam and Okay, 1977: Manton et al., where k, = k,, equation (18a) reduces to:
1979; Strehler, 1977). One striking and fa/liy = (ua/is) * Ga/S)V*. (18b)

surprising reversal concerns Puerto Rico
which, among countries for which good A shown in the second section of the
Appendix,

mortality statistics are available, is the
world’s leader in life expectancy at age 65
(Vaupel, 1976). Such convergence and § = {(k/2(0))/(k/2(0) + H)}*. (19)
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Consequently, assuming 7(0)=1, equation
(18b) can be rewritten as:

Ha/fiy = (ua/py) * (k+H)/(k+H).  (20)

The second cohort might be called “dis-
advantaged” relative to the first if u, ex-
ceeds u, and if, as a result of previous
excess mortality, H, exceeds H,. Consider
the special case where uz/u, equals Hy/H;:
that is, suppose the current level of dis-
advantage is the same as the overall his-
torical level. In this case, equation (20)
implies that as H, and H, increase with
age, pp will approach j,; i.e., the cohort
mortality rates will converge. There will
not, however, be any cross-over: 4, will
never fall below g,. For a cross-over to
occur the current mortality differential for
individuals must be somewhat less than
the overall differential in the past; the pre-
cise condition is

llz/ﬂl < (k+Hz)/(k+H1)~

A simple example illustrates these dy-
namics. Suppose that H,/H, equals 2, so
that historically the disadvantaged cohort
has suffered twice the force of mortality of
the advantaged cohort. Suppose that H,
equals 1. And suppose that k=1. In this
case, equation (19) indicates that one-half
of the advantagéd cohort and one-third of
the disadvantaged cohort are alive. Thus,
as can be seen from either equation (18b)
or equation (20), the cohort mortality dif-
ferential, ji,/u,, will be two-thirds of the
individual mortality differential, u./u,.
Consequently, if u,/u, like H,/H, equals
2, the cohort differential 4i,/u, will be 1.33.
If, however, u,/u, equals 1.2, g,/u, will
equal 0.8: although individuals at any spe-
cific level of frailty in the disadvantaged
cohort suffer a 20 percent higher force of
mortality than individuals in the advan-
taged cohort, the disadvantaged cohort
will appear to be doing 20 percent better
than the advantaged cohort.

Table 3 displays population and indi-
vidual mortality rates for Swedish males
and females in 1975. In calculating the
individual rates, it was assumed that
frailty at birth for males and females was
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identically distributed, with a mean of 1
and a k of 1. A value of 1.0 was selected
for k because it produced a relatively con-
stant male/female ratio after age 30, i.e., it
eliminated the convergence in the unad-
justed cohort data. The value of 1.0 was
the largest value of k that eliminated the
convergence; smaller values yield diverg-
ence. As in Table 1 and for essentially the
same reasons, the male and female cohort
and individual mortality rates are mea-
sured in terms of ¢, but the comparisons
of the rates are in terms of the ratio of un,
to Mr.

DISCUSSION

The three variables usually considered
in studies of mortality—population
group,. age, and year—are well defined
and readily measurable. The variable
“frailty,” on the other hand, could be de-
fined in any of a number of ways and,
however defined, is difficult to measure.
As a consequence, demographers have
largely ignored heterogeneity in frailty,
presumably in the hope that such neglect
would result in estimation errors that are
small and centered around zero.

The results of this study, however, sug-
gest that ignoring frailty may result in
biased estimates. Individual aging rates,
past and future progress in reducing mor-
tality, and mortality differentials between
populations may be underestimated. On
the other hand, current life expectancy
and potential gains in life expectancy from
averting specific causes of death may be
overestimated. Furthermore, illustrative
calculations based on Swedish mortality
data suggest the possible magnitude of
bias. Given the importance of understand-
ing the dynamics of mortality in demo-
graphic and biomedical research and in
public policy analysis, the results indicate
that heterogeneity in frailty is an area of -
research that may well prove worthy of
considerable attention.

APPENDIX

I. In this study we have defined frailty, z,
as a continuous random variable. In mor-
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Table 3.—Population and Individual Mortality Rates for Swedish Males vs. Females in 1975

k=« k=1.0
lﬁx for 1ﬁx for 19x for 1% for
Age males females um/uf males females um/uf
0 0.01022 0.00802 1.28 0.01027 0.00805 1.28
5 0.00050 0.00030 1.67 0.00051 0.00030 1.70
10 0.00030 0.00020 1.50 0.00031 0.00020 1.55
15 0.00074 0.00030 2.47 0.00076  0.00031 2.45
20 0.00120 0.00040 3.00 0.00124 0.00041 3.03
25 0.00118 0.00050 2.36 0.00124 0.00052 2.39
30 0.00126 0.00070 1.80 0.00134 0.00073 1.84
35 0.00156 0.00072 2.17 0.00170 0.00076 2.24
40 0.00258 0.00122 2.12 0.00289 0.00132 2.19
45 0.00354 0.00182 1.95 0.00407 0.00201 2.03
50 0.00584 0.00312 1.87 0.00702 0.00357 1.97
55 0.00928 0.00444 2.10 0.01182  0.00532 2.23
60 0.01448 0.00720 2.02 0.01998 0.00921 2.18
65 0.02424  0.01190 2.05 0.03798 0.01670 2.30
70 0.03840 0.02108 1.84 0.07245 0.03352 2.21
75 0.06306 0.03837 1.66 0.15811 0.07536 2.20
80 0.09974 0.06730 1.51 0.36567 0.18537 2.22
85 0.15386 0.12087 1.30 0.77558 0.50974 2.10
90 0.21759  0.18046 1.23 0.99867 0.95221 2.18
tality analysis age of death, a, may also be Hence,

considered to be a continuous random
variable. This section of the Appendix de-
rives the joint probability density function
(p.d.f.) of a and z and various marginal
and conditional p.d.f.’s involving a and z.

As indicated in the text, we assume in
this study that the marginal p.d.f. of z,
f2(z), is a gamma p.d.f.:

foz) = Nk-zE-1 "2 /T(k). (A.1)

The force of mortality by definition is

given by:

ﬂ(a’z) = fa,z(alz)/s(a,z), (Az)

where f,.(a|z) is the p.df. of a condi-
tional on z. Solving this equation for
faiz(a]z) and substituting equations (lc),
(3), and (4) yields:

faz(@lz) = z - u(a) - e H@ (A.3)

The joint p.d.f. of a and z, f, ,(a,z) is the
product of the two p.d.f.’s:

fax(@2) = [:(2) - faualz). (A4

'z”~e-2"‘<“’/1‘(k),
(A.5)

faa, z) = w(a) N*

where .
Ma) = N\ + H(a).

Integrating (A.S) with respect to z from 0
to « yields the marginal p.d.f. of a:

fa@) = u(a) - k - A*/(Ma))*+". (A.6)

Since the p.d.f. of z conditional on a
(i.e., the p.d.f. of frailty among those who
die at age a) is given by:

faa(zla) = fa-(a,2)/fa(a),
it follows that

fra(z]@) = (\(@))¥+1- 28 e 2@ 2/T(k + 1).
(A.8)

This p.d.f. is clearly a gamma p.d.f. with
parameters A(a) and k+1.

Because survival at age x implies an age
of death greater than x, integrating (A.4)
with respect to age of death from x to o,
remembering that

(A7)
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(e}
f fa/z (a/z)da = e-Z‘H(x)’
x

and then normalizing the result, yields the
p.d.f. of z in the surviving population at
age x:

faz) = (\(x))ez*~te™® 2/ T (k).
(A.9)

This p.d.f. is also a gamma p.d.f., but with
parameters A(x) and k.

I1. To derive the individual force of mor-
tality u(x,z) as given in equation (11), ob-
serve that it follows from (6b) and (8a)
that

A(x) = u(x) - k/Ax).  (A.10)
By definition the cohort force of mortality
is given by:
H(x) = fa(x)/5(x). (A.11)
Solving (A.11) for §(x) and then sub-
stituting (A.6) and (A.10) yields:
§(x) =(N/A(x))E. (A.12)

The mean frailty of the cohort at age x can
be derived from the parameters of f,(z) in
(A.9):

Z(x) = k/\(x). (A.13)

Equations (A.12) and (A.13) together im-
ply that:

Z(x) = #0) - (SCNV*, (A.14)

(since A = A\(0).) Solving (6b) for u(x) and
substituting the result and (A.14) in (lc)
yields the form of u(x,z) given in (11).
Also note that equations (A.12) and
(A.13) and the definition of A(x) as

Ax) =X+ Hx)

imply the formula for § as used in equa-
tion (19).

III. To derive the individual age-specific
probability of death ,g.(z) given in (12),
note that by definition:

s(x+n,z) = 5(x,2) - (1 —nqx(2)). (A.15)

Using the formulas for s in (3) and (4) it
follows from (A.15) that:
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nqx(z) = 1—exp{—(H(x+n,z)—H(x,2))}.
(A.16)

As indicated in (2a), integrating (11) with
respect to age from O to x, remembering
that

§(x) = exp {— fo xﬁ(t)dt},

yields the cumulative hazard function for
individuals:

H(x,z) = k * (z/2(0)) - (1/5(x))"*. (A.18)

When (A.17) is substituted in (A.16),
equation (12) is the result.

To derive the adjusted period mortality
rates §, given in (16) observe that the cu-
mulative hazard function for individuals
derived from the adjusted period life table
can be expressed, by analogy to (A.17), as:

H(x,z) = k + (z/2(0)) - (1/3(x))"*. (A.18)

Thus, the individual age-specific probabil-
ity of death ,q.(z) given in (A.16) may be
evaluated using either (A.17) or (A.18).
Equating the two forms and using (13)
and (17) to introduce the variables § and §
yields equation (16).

IV. Equation (5) assumes that the force of
mortality for a cohort equals the average
force of mortality for the surviving indi-
viduals in the cohort. Though this is an
intuitively plausible assertion, its truth is
not immediately apparent. Here we in-
dicate the required steps for a formal
proof.

The force of mortality is defined by
(A.11):

A(x) = fa(x)/5(x).
The p.d.f. f.(x) is given by:

falx) = f “fadlx, )z, (AL19)

Equations (A.4) and (A.3) imply that this
can be rewritten as:

fux) = [ fl) 2 o) s(x, 2)dz. (A.20)
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It is apparent that
fx(2) = fa(2) - s(x,2)/5(x). (A.21)

Reexpressing (A.20) in terms of f.(z) and
then substituting the result in (A.11)
yields:

i) = ue) [z fuede. (a2

The integral in (A.22) simply equals Z(x).
Thus, we have equation (6), which can be
true if and only if equation (5) is true.
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