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Synopsis. In this paper we discuss the notion of individual frailty and its interpretation. In 

addition, we consider the application of this concept to different areas of demography, 

epidemiology, and the genetics of aging. 
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Abstract 
Hidden differences in the survival chances of individuals in a population 

influence the shape of the mortality rate observed in demographic and 

epidemiological studies. To evaluate the contribution of such hidden 

variations to observed hazards, frailty models have been suggested. The 

application of these models to the analysis of survival data in demography, 

epidemiology, and biostatistics has opened up new avenues for survival 

studies. However, along with many useful insights and ideas, several 

unjustified beliefs (myths) have also been generated. In this paper we 

critically discuss these beliefs. In particular, we discuss the notion of 

individual frailty and show that the interpretation thereof depends on the 

identifiability conditions specified for the respective frailty model. We 

discuss strengths and weaknesses of shared frailty models with and without 

observed covariates. We explain why bivariate correlated frailty models 

are the most appropriate for the analysis of survival data on related 

individuals. We discuss new bivariate survival models with non-gamma 

frailty distribution and potential directions for further research. 
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1. INTRODUCTION 

Unobserved susceptibility to death, also called “hidden heterogeneity” or 

“frailty”, is a major concern in the demographic analysis of survival, where 

individual variations in survival chances cannot be ignored. To take such 

differences into account, frailty models have been suggested (Vaupel et al., 

1979). These models are used to explain the deviant behavior of mortality rates 

at advanced ages (Vaupel and Yashin, 1985), to correct biased estimates of 

regression coefficients in Cox-type models of hazard rate (Chamberlain, 1985) 

and to separate compositional and biological effects in aging studies (Manton et 

al., 1986). Frailty models play an important role in the interpretation of the 

results of stress experiments (Yashin et al., 1996a) and in centenarian studies 

(Yashin et al., 1999). The use of survival data on related individuals opens a 

new avenue in frailty modeling. Genetic variation, heritability, and other 

properties of individual susceptibility to death can now be analyzed using 

correlated frailty models (Yashin and Iachine, 1995a,b; Yashin and Iachine 

1997). 

The use of frailty modeling has its limitations, as is the case, of course, 

with any kind of modeling. Unjustified beliefs (myths) arise when such 

limitations are ignored or not well understood. Such beliefs can promote the 

misuse of the models and also the misinterpretation of the results of analyses.  

Often, they exaggerate the ability of this approach to address real problems. In 
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this paper we discuss some of these unjustified beliefs. In particular, we explain 

why frailty models used in univariate and traditional bivariate analyses (i.e. 

analyses based on the idea of shared frailty) have radically different properties. 

We discuss why the bivariate correlated frailty models are more appropriate in 

the analysis of survival data on related individuals than the shared frailty 

models. We then evaluate the efficiency of the estimates of regression 

coefficients in the bivariate frailty models. Finally, we describe new bivariate 

survival models with non-gamma frailty distributions and discuss potential 

directions for further research. 

 

2. FRAILTY MODELING 

Frailty models without observed covariates. Such models are used when only 

survival data are available for the analysis, or when additional information is of 

no interest. These models are described by the stochastic hazards, 

μ(Z,x)=Zμ0(x), or 

 μ(Z,x)=Zμ0(x) ( )+ ~μ x               (1) 

Here the non-negative random variable Z is called frailty, μ0(x) is an underlying 

hazard and ( )~μ x  is a “background” hazard. This model is non-identifiable from 

survival data, i.e., different combinations of μ0(x), ( )~μ x  and frailty distributions 

may produce the same marginal hazard rate ( )μ x . The model becomes 
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identifiable when the parametric structures of μ0(x) and ( )~μ x  are fixed and Z  is 

assumed to belong to some parametric distribution family, e.g. gamma.  

Frailty modeling represents an attempt to take a deeper look at the 

mechanisms of aging and survival than the traditional non-parametric methods 

of statistical analysis of survival data allow us to do. By using these models we 

accept the fact that hidden internal or external factors exist that influence 

mortality and survival. We also assume that information about such factors is 

contained in the shape and structure of conditional hazards and in the form of 

frailty distributions. In some analyses the frailty variable may undergo further 

decomposition. For example, the decomposition of frailty into genetic and 

environmental components has been used in the analysis of twin data to better 

understand the roles of genes and the environment in susceptibility to death and 

longevity (Yashin and Iachine 1995a,b). 

Frailty models with observed covariates. In frailty models with the  vector of 

observed covariates U the individual (conditional) hazard is a function of Z and 

U. One of the traditionally used forms of this hazard is  

                            μ(Z,U,x)=Zμ0(x)              (2) e Uβ∗

Here β is a vector of regression coefficients characterizing the measure of 

influence of U on the hazard rate, and the symbol "*" denotes transposition. 

Usually it is assumed that U and Z are independent. To simplify our further 

discussion we assume that covariate U is a scalar. 
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The random variable Z is often used to account for omitted covariates 

(Andersen et al., 1992). Another role of the random effect in model (2) is to 

describe the non-proportionality of the conditional hazards (μ U x, )  in order to 

improve the fit to the model as compared to the traditional proportional hazards 

models used in the Cox regression. Univariate models (2), which are frequently 

used in studies of unrelated individuals, are identifiable if EZ<∞. In this case no 

assumptions about ( )μ0 x  or about the class of distributions of Z are needed 

(Elbers and Ridder, 1982). The proof of the identifiability property given by 

Elbers and Ridder (1982) does not provide us with statistical methods capable 

of estimating respective characteristics of the model from the data. The 

respective procedures, a version of the EM-algorithm, were later realized for the 

gamma frailty models (Andersen et al. 1992). Note that when EZ=∞, e.g. in the 

case of positive stable frailty distribution (Hougaard, 1986), model (2) is not 

identifiable. In this case the additional information represented by the covariate 

is not sufficient for distinguishing between the different frailty/hazard 

combinations. In this case the identifiability problem can be solved by using 

data on related individuals. 

Many studies have focused on evaluating the effects of omitted covariates 

on the estimate of regression coefficient β in model (2). It has been shown that 

the influence of the observed covariate is underestimated when the presence of 

omitted covariates is ignored (e.g. Chamberlain 1985, Gail 1984). This problem 
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can be corrected if one models the omitted covariate appropriately, e.g. by using 

a frailty model. It is important to point out, however, that the estimates of 

regression coefficients in these two situations (i.e. when the omitted covariate is 

included in the model, either as an observed variable or as a random effect, and 

when the omitted covariate is ignored) have different meanings. In the former 

case, the estimate represents the effect of the covariate on the individual level, 

i.e., when the value of the omitted variable is known. In the latter case, the 

estimate represents the marginal effect of the omitted covariate on survival. The 

distinction between the two cases might be important when dealing with 

forecasting, where the type of regression coefficient to be used for predicting 

the outcome should depend on the available information.  

Bivariate models.  Initially, bivariate and multivariate frailty models exploited 

the idea of shared frailty. These models were used in studies of the effects of 

dependence between life spans (or other durations) on the estimates of 

regression coefficients in the Cox-type hazard model with random effect 

(Clayton, 1978; Clayton and Cuzick, 1985; Huster, 1987; Hougaard, 1995). 

Although parametric specification of a frailty distribution is not necessary in 

models characterized by hazard (2) (Elbers and Ridder 1982), such a 

specification is often used as a matter of computational convenience. However, 

incorrect parametric specification can, in fact, bias the estimates of regression 

coefficents. Another appealing feature of multivariate frailty models is their 

identifiability in the absence of observed covariates. The information contained 
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in bivariate survival data along with some additional assumptions used when 

extending the univariate frailty model (2) to the multivariate case (e.g. the 

conditional independence assumption, additive frailty structure) is enough to 

reconstruct both the frailty distribution and the underlying hazard functions 

(Iachine and Yashin, 1998). 

The assumption about the proportionality of a hazard makes frailty models 

a simple and convenient tool for analytical and computer calculations. The 

maximum likelihood estimation for frailty models is facilitated by the fact that 

the likelihood function can be expressed in terms of the Laplace transform of 

the frailty distribution (Aalen, 1987). Semiparametric estimates of the hazard 

function and other parameters of the model can be obtained in the presence of 

censoring by means of the EM-algorithm (Nielsen et al., 1992, Iachine and 

Yashin, 1995), and they have appealing asymptotic properties (Parner, 1998, 

Korsholm, 1999). 

Despite their simplicity these models turn out to be useful in providing 

insights and ideas for analyzing real-life phenomena. They have been used to 

explain the deceleration of the mortality rate at older ages (Vaupel et al. 1979, 

Vaupel and Yashin 1985, Yashin et al., 1994; Vaupel et al., 1998). They allow 

us to account for omitted covariates and heterogeneity when calculating the 

effects of observed covariates on survival in regression studies (Chamberlain 

1985). They help to clarify the role of genes and the environment in the 

variation in human life span, (Yashin and Iachine 1997), etc. The major 
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criticism of these models is that the basic, underlying assumptions are 

insufficiently grounded in biological reality: the proportional structure of the 

hazard, the form of a frailty distribution, and the independence of observed and 

omitted covariates. Other limitations of frailty models are less well-known. 

They are related to some unjustified concepts and beliefs (myths) which often 

find expression in applications using these models but which have not as yet 

been sufficiently discussed in the literature. 

 

2.THE MYTHS 

Several myths associated with frailty modeling exaggerate the ability of 

these models to address real problems. Some of them create an illusion that the 

problem is solved when, in reality, basic assumptions have made a major 

contribution in the results. Others misinterpret the notions of individual and 

shared frailty. Finally, some ignore confounding problems in the estimation of 

the parameters of the model. The uncritical use of such unjustified beliefs and 

concepts may inhibit the further development of this field and make it difficult 

to understand the proper place of frailty modeling in the analysis of survival 

data.  

Myth 1. The underlying hazard ( )x0μ  in model (1) can be approximated by 

a Gompertz-Makeham curve 

The models represented in (1) have been used, for example,  in 

demographic analyses of mortality in heterogeneous populations (Vaupel et al. 
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1979; Lancaster and Nickell, 1980; Heckman and Singer, 1984a, b; Hougaard, 

1984; Manton et al., 1986; Vaupel and Yashin, 1985a; Bretagnolle and Huber-

Carol, 1988; Yashin et al., 1994). To make such models identifiable one must 

fix the parametric structure of the underlying hazard and the frailty distribution 

and then use parametric methods of statistical analysis (e.g. the maximum 

likelihood method). This practice is so common nowadays that nobody even 

tries to explain why a particular form of ( )x0μ  is chosen. In demographic 

applications, the Gompertz or Gompertz-Makeham mortality rate are often used 

as an approximation for ( )x0μ  (e.g. μ0(x)=aebx and ( )~μ x =c). In epidemiological 

studies of cause-specific mortality as well as in econometric models of duration 

(Manton and Stellard, 1988), the Weibull parametrization of ( )x0μ  is often used. 

Gompertz curve for the underlying hazard is used in testing heterogeneity 

models of experimental data (Service, 2000). However, such assumptions are 

neither biologically nor empirically justified. Moreover, the indirect 

semiparametric estimates of the underlying hazards obtained from twin data 

using a gamma frailty model show that an underlying hazard may increase 

faster than the Gompertz curve (Yashin and Iachine, 1997). There has been no 

study or survival experiment, which would allow us to make a direct estimate of 

( )x0μ  from failure-time data and to suggest its parametric form. Weiss (1990) 

emphasized the importance of bringing more biological background in frailty 

modeling. A substantial fraction of variation in frailty has an underlying genetic 
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basis, which can be used in specification of both the underlying hazard and 

frailty distributions. 

 

Myth 2. The “amount of hidden heterogeneity” can be estimated from 

survival data  

It is generally believed that the variance in frailty distribution estimated in 

the analysis of survival data characterizes the measure of heterogeneity present 

in this population. Since frailty models without observed covariates) are non-

identifiable unless one assumes a functional form for the underlying hazard, the 

estimates of frailty distribution depend on the choice of a functional form for 

( )x0μ . Fig. 1 shows how Gompertz and gamma-Gompertz models fit mortality 

data for the cohort of Swedish females born in 1862. 

Fig. 1 is about here 

The gamma-Gompertz model assumes that ( )x0μ  follows the Gompertz curve 

and that frailty is gamma-distributed. The estimate of the variance in a frailty 

distribution in this case is about 0.5. If, however, we assume that an underlying 

hazard is described by a logistic curve, the estimate of frailty variance becomes 

zero. This means that the biological interpretation and justification of 

conditions, which guarantees identifiability of respective frailty models, 

becomes a crucial issue when the questions concerning the quantitative aspects 

of hidden heterogeneity are addressed: two survival models with different 
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“degrees” of heterogeneity describe the same data equally well. An illusion that 

the “amount of heterogeneity” in the population can ultimately be estimated 

contradicts the fact that this “amount” is determined by the conditions of 

identifiability (Elbers and Ridder, 1982; Heckman and Singer, 1984b; Hoem 

1990; Iachine and Yashin, 1998). Different identifiability conditions result in 

different estimates of frailty distribution and the underlying hazards from the 

same data.  

More generally, the identifiability of frailty models is a matter of the 

balance between information contained in the data and assumptions put into the 

model. Survival data on unrelated individuals without observed covariates 

require assumptions about ( )x0μ  and Z . Fig. 2 shows the graph of the logarithm 

of the underlying hazard as a function of age and variance in the case a 

logistic marginal mortality rate.  

2
zσ

Fig.2 is about here 

One can see from this figure that the shape of the underlying hazard depends on 

the value of , and vice versa. This graph is a nice illustration of the non-

identifiability property of the proportional hazard frailty model without 

observed covariates. 

2
zσ

In a proportional hazard model with covariates the assumptions about 

( )x0μ  and Z can be relaxed since they can be identified from the data non-

parametrically. When analyzing data on related individuals using a multivariate 
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shared frailty model, no covariates are required for identifiability. In this case 

the conditional independence assumption plays a crucial role.  

Thus, there is no absolute measure of heterogeneity in a population. The 

“amount of heterogeneity” measured in a statistical analysis of survival data is 

determined by identifiability conditions for the selected model. 

Myth 3. The properties of individual frailty distributions can be analyzed 

using shared frailty models. 

The multivariate frailty models are frequently used to analyze survival data 

on related individuals with different types of familial relationships, e.g. 

identical (MZ) or fraternal (DZ) twins, parents, children, grandchildren, etc. An 

important concept arising in connection with this type of statistical analysis is 

that of individual or marginal frailty. Let us illustrate this concept using the 

survival of MZ and DZ twins as an example. 

A crucial condition exploited in all twin studies is that characteristics of 

MZ twin individuals are not different from those of DZ twins, and singletons 

i.e. non-twins. This assumption is supported in survival studies by empirical 

evidence (Christensen et al, 1995, Yashin and Iachine, 1995a). In particular, 

both types of twins have the same marginal mortality pattern ( )xμ . Suppose that 

one wishes to develop a bivariate frailty model that could be applicable both to 

MZ and to DZ twins (which should, of course, be flexible enough to deal with 

the potential difference in the dependence structures of MZ and DZ twin 

survival times). We can say that the frailty variable used in this model is 
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individual in nature when it is attributable to a single twin individual and not 

necessarily to a pair of twins. More formally, for the frailty variable to be called 

individual, the model has to satisfy the following natural consistency condition: 

it should assign the same marginal frailty distribution to MZ twins as to DZ 

twins.  

The third myth involves the belief that shared frailty models can be used to 

investigate the properties of individual frailty. Although such models are 

identifiable without additional covariate information (Iachine and Yashin, 

1998), the notion of shared frailty must be distinguished from that of individual 

frailty as it is used in the correlated gamma-frailty model (Yashin et al., 1995) 

because shared frailty models do not satisfy the consistency condition specified 

above. 

Versions of the shared gamma frailty model have been used successfully in 

the analysis of bivariate survival data. Hougaard et al. (1989) and Vaupel et al. 

(1992) applied the gamma-frailty model to prove that MZ twins share more 

longevity-related genetic material than DZ twins do. In the absence of observed 

covariates the conditional bivariate survival function in the case of this model is: 

))()((
21

2211)|,( xHxHZeZxxS +−=                                  (3) 

where Z is a shared frailty, , and ∫ ==
x

ii iduuxH
0

0 2,1,)()( μ 0i (x), i = 1,2μ  are the 

underlying hazards associated with two related individuals. Note that (3) assumes 

the conditional independence of life spans T1 and T2 given Z. When frailty is 
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gamma-distributed with the mean 1 and variance σ2, the marginal bivariate 

survival function is (Cox and Oakes, 1984): 

 ( ) 222
1

221121 1)()(),( σσσ −−− −+= xSxSxxS                                 (4)  

Here  are marginal univariate survival functions. One can see that the 

only parameter responsible for the association between and is σ

2,1),( =ixSi

1T 2T 2. 

This model has several remarkable properties. It has a semiparametric copula 

structure, which allows us to take into account a difference in univariate survival 

functions of related individuals from different generations, as well as individuals 

of different sex. This model is identifiable without our having to make 

assumptions about the parametric specification of the conditional survival 

function: this function and the parameters of other models can be identified from 

bivariate survival data (Iachine and Yashin, 1998). When using this model, one 

can easily establish the difference in association parameters, σ2, for populations of 

pairs of individuals with different degrees of familial relationship (e.g. MZ and 

DZ twins, Vaupel et al., 1992). However, since in the shared frailty model the 

marginal distribution of frailty coincides with the distribution of the shared frailty 

itself, the marginal frailty distributions for MZ and DZ twins will be different. 

Thus, shared frailty does not characterize individual frailty. 

Note that the application of the shared gamma-frailty model to studies of 

genetic aspects of aging and survival is subject to certain limitations. In particular, 

although characteristics of this model can always be estimated from bivariate 
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survival data, the genetic interpretation of these characteristics is often 

problematic. For example, the large-sample estimates of parameter σ2 will always 

be different for MZ and DZ twins, ( )22
DZMZ σσ > , which means that these twins 

share different amounts of genetic material. However, without additional 

assumptions this finding is only of limited use for evaluating of the influence of 

genes on human mortality and longevity. Thus, the shared frailty model cannot be 

used for evaluating properties of individual frailty. 

Myth 4. The association parameter in shared gamma-frailty models with 

observed covariates can be estimated from univariate data. 

The fourth myth involves the belief that, in shared frailty models with 

finite mean of a frailty distribution and observed covariates, an association 

parameter (which in the case of gamma-frailty coincides with the variance of 

the frailty distribution) can be estimated from univariate data. This belief is 

based on a result of Elbers and Ridder (1982): if a frailty distribution has a 

finite mean, then the presence of observed covariates (with the covariate effects 

provided by model (2)) makes the univariate proportional hazard frailty model 

identifiable. The source of confusion is equation (2), which specifies the same 

functional form for the hazards used in univariate and shared frailty models. 

However, “shared frailty” in bivariate survival models differs from  “individual 

frailty” as it is used in the univariate case. Initially, this difference in the 

different notions of frailty was not clearly understood. Clayton and Cuzik 

(1985) notice that in case of bivariate proportional hazards model with gamma-
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distributed shared frailty and observed covariate "the extent to which 

interpretation of  is confounded by population heterogeneity, which is not 

shared by the two coordinates is in need for further studies". Wei et al. (1989) 

found, that in this model "the dependence parameter and the regression 

parameter are confounded". Hougaard pointed out a strange property of this 

model in the discussion of Clayton and Cuzick (1985). He claims that "the joint 

distribution of  can be identified from the marginal distributions and thus 

the association parameter  describes more than just association”. Similar 

statements about the opportunity to identify the variance of frailty in bivariate 

survival model from univariate data have been repeatedly cited in biometrical 

and statistical literature (e.g. Hougaard 1986; 1987; 1989; Klein 1992 (p.102); 

Hougaard et al. 1989; Andersen et al. (p.674); Pickles et al. 1994). It is worth 

noting that this conclusion is only true when the shared frailty model is indeed a 

correct model for the data. It general, however, when the data is generated by a 

different mechanism, the value of σ

2σ

),( 21 TT

2σ

2 estimated from univariate data may, in 

fact, have nothing to do with a measure of the association between life spans. 

Indeed, in accordance with this statement one expects to identify different 

association parameters for MZ and DZ twins analyzing respective univariate 

life-span distributions. The identifiability property (Elbers and Ridder, 1982) 

implies, however, that univariate analysis gives the same values of a variance of 

a frailty distribution  for MZ and DZ twins who presumably have the same 

univariate life-spans distributions given observed covariates. Similar situation 

2σ
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corresponds to survival data for a group of women and their daughters and for 

the same group of women and their granddaughters. In both situations the value 

of parameter σ2 estimated from the data on mothers will be the same despite the 

fact that the life span associations between related individuals in these two data 

sets are different.  

The reason for this contradiction lies in what might be called the 

“overidentifiability” of the shared frailty models with finite mean and covariate 

effects provided by (2). Given the large amount of information present in the 

data (bivariate observations with observed covariate information), these models 

impose too many assumptions on the structure of the survival time distribution 

(proportional hazard covariates, conditional independence, finite mean of 

frailty), thereby permitting the estimation of the “association” parameter from 

univariate data. Thus, there is nothing wrong with the shared frailty model itself 

– it is just that “overidentifiable” models easily become misspecified when 

applied to real data. As a result, an uncritical interpretation of the results may 

lead to misleading conclusions.  

Myth 5. The shared gamma-frailty model with observed covariates is a 

convenient tool for the analysis of twin data 

This myth has to do with the following version of the shared frailty model: 

)()(
2121

2
2

1
1),,|,( xHZexHZe UU

eeUUZxxS
ββ −−=                            (5) 
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Here Z  is the shared frailty variable, which has a finite mean,  is the 

cumulative hazard function as in (3), and 

)(xH

β  is the regression coefficient 

describing the influence of the covariates  on the underlying hazard. The 

variance of shared frailty in model (5) is often used as a measure of dependence 

between the two survival times. Clearly, when the frailty variance is zero, the 

survival times are conditionally independent given the covariates. On the other 

hand, conditional variance of shared frailty induces dependence between 

survival times (Yashin and Iachine, 1999). So, why might it be wrong to use 

model (5) to analyze the degree of dependence between individuals who are 

related to each other in various different ways? Again, let us consider identical 

(MZ) and fraternal (DZ) twins as an illustrative example. 

21,UU

Note that univariate sub-models of model (5) have the following form: 

)(),|( xHZe U

eUZxS
β−=                                          (6) 

which clearly coincides with model (2). It is crucial that this model be 

identifiable when the frailty variable has a finite mean (Elbers and Ridder, 

1982). It is thus possible to apply model (6) to data on MZ and DZ twins, 

treating them as singletons (i.e. as unrelated individuals), and to recover the 

parameters of the models separately for MZ and DZ twins. The question is 

whether the parameters for MZ twins are similar to those for DZ twins?  

On the one hand, MZ and DZ twins are considered univariately equivalent 

in twin studies, and model (6) can be viewed as a straightforward univariate 
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model for the entire general population, including the twins taken separately. In 

this case univariate analysis of MZ and DZ twin data should yield similar 

results.  

On the other hand, model (6) is an identifiable univariate submodel of the 

shared frailty model (5) and should, if the shared frailty model is a correct 

model for the data, yield consistent estimates of the parameters of the shared 

frailty model itself since they coincide with the parameters of the univariate 

model. But if variance in shared frailty or the distribution of shared frailty in 

general is a measure of the dependence between the twins’ life spans, such an 

analysis should yield different frailty distributions for MZ and DZ twins, 

assuming that MZ twins exhibit a different association between their survival 

times than DZ twins.  

The reason for this apparent contradiction is quite simple – a shared frailty 

model with finite mean can never be a correct model for both MZ and DZ twins 

in the presence of observed Cox-type covariates. Fig.3 shows the graphs of the 

estimates of the correlation of life spans, the standard deviation of shared frailty 

σ, and the regression coefficient β as functions of correlation coeficient of 

frailty ρz, obtained using a shared frailty model with observed covariates.  

Fig.3 is about here 

The data sets are generated using a correlated frailty model with observed 

covariates for different values of ρz. The estimates of σ and β are obtained using 

a shared frailty model with observed covariates. The correlation of life spans 
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was estimated directly from the data. One can see that for ρz=0, i.e., for the 

independent individuals the estimate of σ  (which is supposed to characterize an 

association between life spans along the lines of a shared frailty model) is about 

0.55. It is clear that this association is spurious and that it does not characterize 

the dependence between the respective life spans.  

As was already noted above, in the presence of observed Cox-type 

covariates the shared gamma-frailty model fails to satisfy some natural 

assumptions. For example, in the analysis of several bivariate data sets (e.g. for 

MZ and DZ twins) one cannot assume that the marginal univariate survival 

functions are the same, since in this case all parameters of bivariate models should 

also be the same, including the association parameters. The reason for this 

contradiction is that shared frailty does not have an individual interpretation. This 

property limits the possibility of a joint analysis of MZ and DZ twin data, e.g. in 

the evaluation of genetic characteristics of frailty and longevity using methods of 

survival analysis and quantitative genetics (Yashin and Iachine, 1995a,b), where 

the individual interpretation of frailty plays a crucial role.  

Moreover, some additional limitations of the shared-gamma-frailty model 

become evident in the presence of observed covariates. If, for example, the true 

conditional hazards are: 

2,1,)(),,( 0 == iexZxUZ iiU
iii

βμμ                              (7) 
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with  and iU i , i = 1,2β  specified as observed covariates and their respective 

regression coefficients, then the bivariate survival function given observed 

covariates is: 

( ) 222
1

2221112121 1)|()|(),|,( σσσ −−− −+= UxSUxSUUxxS                     (8) 

where ( ) 2
1

2 )(1)|( σβσ
−

+= U
ii

iexHUxS . In this model the estimates of the association 

parameter  and the regression coefficients 2σ βi  in the Cox-like hazards with 

random effects are always confounded if data on related individuals are used. This 

property has important methodological consequences for the statistical analysis of 

bivariate data. 

There have been several attempts to fix the “overidentifiability” problem 

of the shared frailty models. In short, they were driven by the desire to get rid of 

the identifiability property of the univariate model (2) while keeping the 

bivariate model identifiable. This can be done either by using a frailty 

distribution with infinite mean (Hougaard, 1987) or by relaxing the 

proportionality assumption for the covariate effects. 

Myth 6. The use of “positive stable” shared frailty models allows us to 

avoid a confounding problem.  

The sixth myth is associated with the attempt to avoid a confounding 

problem by using a positive stable distribution (Hougaard 1984) of shared 

frailty instead of gamma frailty. Although this replacement helps us to avoid 

problems induced by the identifiability of the univariate gamma-frailty model 

 22 
 



 

(the univariate positive stable-frailty model with observed covariates is non-

identifiable) it still results in the confounding of association parameter and 

regression coefficient in the Cox-type hazard, as the following analysis shows. 

The positive stable distribution with the parameter 0 < <1α  is characterized 

by its Laplace transform . So, if frailty Z is positive-stable distributed, 

the univariate marginal survival function is:  

αsesL −=)(

))(exp()( αxHxS −=                                                (9) 

where . In the case of shared frailty the bivariate marginal survival 

function is (Hougaard 1987):  

H(x)= (u)du
0

x
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When covariates , i=1,2 are observed, and the conditional hazards are given by 

(5), then the univariate survival functions conditional on observed covariates  

are: 

iU

iU

( ) ( )U
i

U
ii

ii exHexHUxS βαβα ~
)(~exp)(exp)|( −=−=                     (11)  

where , and ~
β αβi = i

α)()(~ xHxH ii = . A remarkable property of this model is that the 

proportional hazards structure of the hazard with the Cox-type regression term is 

preserved after integration with respect to unobserved frailty. Since | , the ~
| | |β β<

effect of hidden frailty (omitted covariates) on the regression coefficient is 

obvious, and its value is measured by the value of parameter α . 
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Using a positive stable shared frailty model one can estimate both an 

association parameter α and regression coefficients βi  from the data on related 

individuals. One problem, however, remains unsolved: the interpretation of 

regression coefficients βi . To illustrate this problem let us assume first that 

β β β= =1 2  is the same for both members of MZ and DZ twin-pairs. Let us 

consider two hypothetical bivariate data sets: one for MZ twins, the other for 

DZ twins. It is clear that the values of parameter α  estimated for MZ and DZ 

twins will be different since they characterize the associations between the 

respective life spans. Hence the values of parameter  and  in 

equation (9) are also different for the members of MZ and DZ pairs, which 

contradicts the natural assumption that the survival of these individuals 

conditioned on observed covariates follows the same (Cox-type) hazards. If we 

assume that parameters  are the same for members of MZ and DZ pairs 

then parameters 

~
β αβ= ( )~H x

~
β α= β

β  and the underlying hazards ( )x0μ  should be different for 

these individuals. 

The values of β  are frequently interpreted as the “strength” of the 

covariates’ influence on survival. So, if the estimates of β  are different for MZ 

and DZ twins, does it mean that the same covariate has a different degree of 

influence on these two types of individuals? Not necessarily, since we are 

considering the effects of the covariate on the shared frailty level, which are 

different for MZ and DZ twins. Indeed, it does not make any sense to compare 
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the estimates of β  for MZ and DZ twins, since we only observe the effect of 

confounding modulated by the differences in αMZ  and αDZ . This is it not a 

characteristic feature of the positive stable frailty model alone. The difference 

in the regression coefficient estimated for MZ and DZ twins will be obtained in 

other shared frailty models (i.e. gamma) when analyzing data with the same 

marginal hazards but different levels of association.  

Thus, confounding estimates of association parameter and regression 

coefficient is a common feature of the shared frailty models with observed 

covariates. 

3. CORRELATED FRAILTY MODELS 

To avoid the methodological problems associated with shared frailty 

models, both with finite and infinite mean of a frailty distribution, the idea of 

correlated frailty has been suggested (Yashin and Iachine, 1994; Yashin et al., 

1995). In this model one more parameter – the correlation coefficient of frailty 

ρ  – is introduced to describe the association between life spans of related 

individuals. In the presence of observed covariates such a model is internally 

consistent: if bivariate data correspond to the correlated frailty model, then the 

large-sample parameter estimates obtained from univariate and bivariate data 

coincide. This model is convenient for the analysis of genetic aspects of 

susceptibility to death and longevity since the estimates of heritability in frailty 

have a one-to-one correspondence to the estimates of correlation coefficients of 
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frailty for MZ and DZ twins. The correlated gamma-frailty model is 

characterized by the bivariate survival function   

S(x1,x2)=  
S x S x

S x S x
( ) ( )

( ( ) ( ) ) /
1

1
2

1

1 2

2 2

1

− −

− −+ −

ρ ρ

σ σ 2ρ σ     (12) 

where  and 2σ ρ  are the variance and correlation coefficient of bivariate frailty 

distribution, respectively, and )()( xTPxS >=  is the univariate survival function 

(Yashin et al., 1995). A statistically significant difference in correlation 

coefficients of frailty estimated for MZ and DZ twins, MZρ  and DZρ , may 

indicate the presence of a genetic influence on susceptibility to death. When 

such an influence is established, the genetic characteristics of frailty (e.g. a 

narrow-sense heritability can be estimated directly from the data. For this 

purpose the genetic model of frailty has to be incorporated into a survival model 

(Yashin and Iachine 1995a,b).  

The use of the correlated frailty models allows us to estimate the age 

pattern of an underlying hazard without making preliminary assumptions about 

its functional form. Fig. 4 shows in the logarithmic scale the graphs of ( )x0μ  

and ( )xμ obtained in the studies of Danish, Finnish, and Swedish twins (Iachine 

et al., 1998). 

Fig. 4 is about here. 

One can see that in all six cases (two sexes and three countries) the 

underlying hazards increase faster than a Gompertz hazard (see Myth 1).  
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Genetic models of frailty. Here we consider the application of the correlated 

frailty model to the statistical analysis of genetic factors influencing the survival 

of MZ and DZ twins. In particular, we calculate semiparametric estimates for 

the six genetic models of frailty, which correspond to six different assumptions 

about its structure. We refer to the notations used in McGue et al. (1993) and in 

Yashin and Iachine (1994) for such models. To be more specific, let A, D, I, C, 

E, and H be the five components of frailty which represent additive genetic 

effects, dominant genetic effects, epistatic genetic effects, common 

environmental effects, uncommon environmental effects, and total genetic 

effects, respectively, in the additive decomposition of frailty. From the 

estimation point of view not more than three components should be represented 

in the model when MZ and DZ data are analyzed (more components can be 

considered if, in addition, data about adopted children and twins reared apart are 

available). In these notations an ACE model refers to the decomposition of 

frailty Z = A + C + E. An AE model refers to the decomposition Z = A + E. 

ADE, DE, DCE, and HE models are defined similarly. We use small letters a2, 

d2, i2, c2, e2 to refer to the respective proportions of variance. For example, the 

relationship 

1 = a2 + c2 + e2

corresponds to the decomposition of variance in the ACE model of frailty. 

Yashin and Iachine (1994) use the assumption that the correlation coefficient of 

the bivariate frailty distribution for this model admits decomposition: 
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1 eca ρρρρ ++=  

where a2 is the proportion of the variance associated with additive genetic 

effects, called narrow-sense heritability; c2 is the proportion of variance 

associated with shared environmental factors; e2 is the proportion of variance 

with non-shared environmental factors; and ρ1, ρ4 , and ρ5 are correlations 

between additive genetic, shared environmental, and non-shared environmental 

components for related individuals. Similarly, ρ2 and ρ3 are correlation 

coefficients between dominant genetic and epistatic genetic components, 

respectively. H2 is used for the broad-sense heritability coefficient H2 = a2 + d2 

+ i2. The model for broad-sense heritability includes a genetic component, H, a 

common environmental component, C, and an independent environmental, E 

(the HCE-model). The respective equations for proportions of variance and 

correlation coefficient are: 

2221 ecH ++=  

2
5

2
4

2 ecRH ρρρ ++=  

   

where R is the correlation coefficient between the total genetic components of 

the phenotype. We use a semiparametric representation for the marginal 

bivariate survival function with respective decompositions of the correlation 

coefficients of frailty. Standard assumptions of quantitative genetics specify 

different values of ρi (i = 1, 2,..., 5) and R for MZ and DZ twins. For MZ twins 
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ρi = 1 (i = 1, 2, 3, 4), ρ5, = 0, R = 1. For DZ twins ρi = 0.5, ρ2 = 0.25, ρ3= m, ρ4 = 

1, ρ5= 0, R = k. Here 0≤ m ≤ 0.25 and 0 ≤ k ≤ 0.5 are unknown parameters. 

Another important assumption is that the variances of the phenotypic traits for 

MZ and DZ twins are the same. This hypothesis was tested and confirmed using 

Danish twin data for both sexes (Yashin and Iachine 1995). 

Correlated non-gamma-frailty models. To test how the results of such 

analyses depend on the type of frailty distribution, we compare the results of a 

statistical analysis of Danish twin data using three bivariate survival models: the 

gamma-, inverse Gaussian, and general “three parameter” correlated frailty 

models (Yashin et al., 1998). The latter model is based on a bivariate extension 

of “the three-parameter” distribution of frailty ( )P z; , ,α δ θ  (with parameters 

α δ θ, , ), which was introduced in a univariate survival analysis by Hougaard 

(1984). 

The most general case corresponds to the correlated frailty model with 

three-parameter frailty distribution (Yashin et al., 1999). This model is 

characterized by the bivariate survival function of the form 

S x x S x S x

S x S x
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The gamma-frailty model (12) can be obtained from (13) by allowing α to 

approach zero. The inverse Gaussian correlated frailty model is characterized 

by a marginal bivariate survival function obtained from (13) by taking  α=0.5: 

( (( ) ( ) ) )}S x x S x S x S x S x( , ) ( ) ( ) exp ln ( ) ln ( )1 2 1
1

2
1

2
2

1
2 2

2
2 1

21 1 1 1=
⎧
⎨
⎩

− − + − −− −ρ ρ ρ
σ

σ σ         (14) 

 

The marginal univariate survival functions were approximated as  

( ) ( )S x s a x x
b
c

e ecx cx
S

= + − + −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−

1 2
0

0

1
2
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The parameters  in equations (13) and (14) are the variance and the 

correlation coefficient of the bivariate frailty distributions. Parameter 

σ ρ2 ,

α  in (13) 

characterizes the three-parameter distribution.  

Although no significant difference was detected between the general three-

parameter model and its special cases for this particular data set, the ability to 

carry out such comparisons in the case of general data on duration presents an 

important advantage over previous approaches based on the use of gamma-

distributed frailty alone. The application of the three parameter correlated frailty 

model may serve as a convenient goodness-of-fit assessment procedure for the 

less complicated models from this family (Yashin et al 1999). 

Frailty and liability models. The notion of liability was first used in quantitative 

genetics. According to Falconer (1990) liability Z is a standard, normally 

distributed random variable, which is related to the discontinuous trait Y by a 
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threshold. For example, the trait may be associated with the absence (Y=0) or 

presence (Y=1) of a disease. In this case if Z<a, where a is the threshold value, 

then Y=0, otherwise Y=1. Later, this definition was adjusted to describe more 

sophisticated liability-trait relationships. For example, Eaves  (1978) and Kendler 

and Eaves  (1988) considered the conditional probability of disease as a logistic 

function of liability. Models of more complicated quantitative traits, including 

duration, have been also suggested and analyzed using multivariate survival data 

(Meyer and Eaves 1988, Meyer et al., 1991). In these models, multidimensional 

normal distribution is traditionally used to describe the association between 

liabilities of related individuals. Contrary to the distribution of liability (which is 

always assumed to be normal), the form of the conditional survival function 

depends on the particular problem one is analyzing. For example, Meyer et al. 

(1991) use gamma density, with a scale parameter as a function of liability, to 

specify the conditional distribution of the age at menarche. For a given value of 

liability , i=1,2  this density distribution function is: iz

 2,1,
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with , i.e., duration is conditionally gamma distributed. Under the i
+ z= e iμ α β

assumption of conditional independence, the joint marginal density distribution 

function for the age at menarche for two related individuals can be obtained by 
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averaging the product  with respect to the bivariate normal )|()|( 222111 ztfztf

distribution of . 21, zz

 Liability models provide a convenient methodological framework for 

studying genetic and environmental aspects of survival. They can describe 

multiple correlations, which is important in the analysis of multivariate (pedigree) 

data. Correlation coefficients of liability are among the parameters of these 

models. Once estimated, they can be useful in further genetic studies of durations. 

Standard methods of quantitative genetics can infer genetic characteristics, such as 

heritability, from correlations (Falconer, 1990). Note that the association 

parameters in the shared frailty models discussed below do not have such a natural 

connection with quantitative genetics. Unfortunately, some technical limitations 

restrict the broader use of this important family of random effect models in 

survival studies.  

 One such limitation is the need to provide a parametric specification of the 

univariate conditional survival functions given liability. Such parametrization is 

often difficult to justify biologically. In the case of bivariate frailty models, this 

specification is not necessary, since the function can be estimated 

semiparametrically (Yashin et al., 1995). Thus, the use of frailty- instead of 

liability models in bivariate survival studies allows us to avoid one hardly 

justifiable technical assumption.  
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 Although widely used in multivariate studies of quantitative genetics and 

genetic epidemiology, liability methods have not yet become popular in 

demography and biostatistics. In contrast, frailty (heterogeneity) modeling has a 

relatively long tradition in demographic and survival studies. Its contribution to 

the research area is recognized, and the methodology is widely used. This 

approach provides a better fit to the univariate survival data than traditional 

methods that do not take unobserved heterogeneity in frailty into account. For this 

reason the demographic interpretation of bivariate findings can be easier when 

frailty models of multivariate survival are used.  

  In the case of traditional liability models, the likelihood function of 

survival data is not represented in a closed form. It is often the case that an 

averaging with respect to unobserved liability cannot be achieved analytically. 

This means that the maximum likelihood procedure may require significant 

computational efforts and can be accompanied by undesirable complications. 

Such efforts are not required in the case of the frailty models discussed here: the 

likelihood functions of the data can be written in closed analytical forms. For 

liability, this problem can be solved by combining the best features of liability and 

frailty modeling in a new approach suggested by Yashin and Iachine (1996). 

Finally, frailty models usually exploit the proportional hazards assumption. 

Despite the fact that additional efforts are often needed to justify its use, this 

assumption is still very popular in epidemiology and biostatistics when analyzing 

the effects of covariates on survival. Therefore, it seems easier to compare, say, 
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the results of bivariate and traditional epidemiological or biostatistical univariate 

survival studies when frailty models are used. Frailty models are convenient for 

the evaluation of longevity limits. The additive decomposition of individual 

frailty, which is used in genetic models, generates a competing risks structure in 

the survival models, where respective risks are associated with the genetic and 

environmental components of mortality. The survival function associated with the 

genetic component can be further used in the evaluation of the biological limits of 

human longevity (Yashin and Iachine 1995a).  

 The concept of liability is used in genetic epidemiology and quantitative 

genetics to describe unobserved susceptibility to disease and death. It provides a 

convenient methodological framework for studying genetic and environmental 

aspects of survival. Liability models have a capacity to describe multiple 

correlations, which is important in the genetic analysis of multivariate (pedigree) 

data. The correlation coefficients of liability play the key role in the estimation of 

heritability indices, i.e., parameters which characterize the contribution of genes to 

the variability in a respective trait (Falconer, 1990). Note that the parameters in 

the shared frailty models do not have a natural connection with the parameters 

used in quantitative genetics. Unfortunately, some technical and methodological 

limitations restrict the broader use of this important family of random effect 

models in survival studies. 

Not all frailty models are appropriate for addressing the problems involved 

in the genetic analysis of durations. Multivariate frailty models have additional 
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constraints on correlation coefficients (Yashin and Iachine 1999b), which restricts 

their use in the analysis of pedigree data. The idea of quadratic hazards (or: of a 

quadratic hazard) combines positive features of the liability and correlated frailty 

models. As a result, one can assume different correlations of frailty variables for 

different pairs of related individuals in pedigree data. One can assume dynamic 

changes in the frailty variable with age. One can also introduce dependence 

between observed and unobserved covariates into the survival model and test 

hypotheses about this dependence. In addition, the quadratic hazard model 

preserves the quadratic structure during the averaging with respect to unobserved 

(normally distributed) covariates. It can also be regarded as a second-order 

approximation of the nonlinear conditional hazard rate. Thus, quadratic hazard 

models combine the multivariate flexibility of the liability models with the 

analytical power of frailty modeling. 

4. DISCUSSION 

In this paper we have presented several examples of how an uncritical 

application of frailty modeling can lead to misleading and sometimes incorrect 

conclusions about the problem under study. These include an incorrect 

assessment and interpretation of the heterogeneity distribution in the 

population, biased results on the strength of the association between survival 

times, and erroneously qualified significance of observed covariates for 

survival. It is clear that these problems are not merely the result of careless 
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application of “standard” frailty models to arbitrary survival data without 

worrying about the questions of fit or the appropriateness of the models used.  

Such problems arise naturally when analyzing complex phenomena of 

hidden population heterogeneity. Obviously, when dealing with unobserved 

quantities some assumptions are necessary in order to relate the observed data 

with unobserved information. That is why the concept of model identifiability is 

so important in frailty modeling, which is a process of finding a delicate 

balance between the available data and the assumptions put into the model. On 

the one hand, it should be possible to recover the parameters of the model from 

the available data, so a number of assumptions to facilitate identifiability should 

be made. On the other hand, making too many assumptions may lead to 

paradoxes, such as the one we saw with the shared frailty model, where the 

association between the mothers and their daughters can be estimated without 

even collecting the data on the daughters.  

Is the  “overidentifiability” of some frailty models a problem – or is it a 

benefit for the statistician? For example, when applying a shared frailty model 

to bivariate survival data with covariates, one might compare the results of the 

bivariate analysis with those of the univariate analysis obtained using a 

univariate frailty submodel. If the results are different (if, for example, a 

different variance of frailty is estimated in the two analyses) then this is an 

indication that a shared frailty model is not a correct model for the data. This 

will be the case in all examples presented in this paper, which concern survival 
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data on relatives with different association levels (e.g., MZ and DZ twins, 

mothers, daughters and granddaughters). The trouble is that this simple 

procedure for testing consistency is rarely applied in the statistical analysis of 

data. The point here is that using a model “blindly”, as a “standard” tool for 

data analysis is the wrong way to go about things. 

It is in the light of this important property, which might be called the 

“falsifiability” of a model, that we should view the historical attempts to extend 

the shared frailty model to get rid of the confounding problem. Simply making 

the univariate model non-identifiable (i.e. for the positive stable frailty 

distribution) corrects the confounding problem, but at what price? First, it 

becomes impossible to check for consistency in the shared frailty model and 

second, the stable frailty assumption effectively limits the modeling 

possibilities for the influence of covariates on survival to the case of a simple 

proportional hazard Cox-regression model. The role of frailty models as a tool 

for the correction of the non-proportionality of marginal hazards given the 

covariates is lost, too. This does not mean that frailty cannot follow a positive 

stable distribution. However, restricting ourselves exclusively to this class of 

distributions severely limits the flexibility of the marginal model. 

There do exist more sensible approaches for solving the confounding 

problem of shared frailty models. One of them is based on extending the 

dimension of the frailty variable and making it equal the dimension of the 

survival data, i.e., introducing multivariate frailty. Yashin et al. (1995) 
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suggested a correlated frailty model which used an additive model of gamma 

frailties to define a bivariate frailty distribution with a given variance and 

correlation coefficient as parameters. The idea of this approach is to allow for 

the identifiability of a marginal frailty distribution from univariate data, while 

limiting the identifiability of association parameters (i.e. the correlation 

coefficient) to the case of multivariate data analysis. In this case, the pairs of 

individuals with different levels of association between life spans will be 

distinguished by the fact that respective correlation coefficients are different. 

An additional advantage is that components of such a multivariate frailty have 

an individual interpretation that allows for interesting applications, e.g., genetic 

analysis of frailty by using the methods of quantitative genetics. 

Another approach, which one could call “copula modeling”, is based on 

relaxing the proportional hazard assumption for the covariate effects, i.e. an 

arbitrary dependence of the underlying hazard on the covariates is assumed. 

Using a parametric or a non-parametric approach, an appropriate 

parametrization of the univariate survival functions given the covariates is 

obtained. Then, this parametrization is substituted into the so-called 

semiparametric or “copula” representation of a particular frailty model. In the 

case of the shared gamma frailty model, this representation takes the form of (8) 

and allows for the estimation of the association parameter from bivariate data. 

Here, the confounding problem does not exits, since the result of Elbers and 

Ridder (1982) does not apply to the arbitrary dependence of the underlying 
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hazard on survival and the univariate submodel is not identifiable.  The 

representation for the correlated gamma frailty is given by (12). 

Since the shared frailty model is nested within the correlated frailty model, 

it is always possible to test for whether or not the shared frailty model is 

appropriate for the data. It seems, however, that the concept of individual 

frailty, which is used in the multivariate frailty models (e.g. in the correlated 

gamma frailty model), provides a greater potential in most applications for 

building models with biologically justified constructs. 

 
 
Legends to the figures 
 

Fig. 1. Graphs of conditional probability of death for the Swedish female cohort 

born in 1862: empirical (solid line), estimated using the Gompertz-

Makeham model (short dashed line), and estimated using a gamma-

Makeham model (long dashed line). 

 

Fig. 2. Graphs of the logarithm of the underlying hazard as a function of age 

and σ2 in the case of a fixed logistic mortality rate. 

 

Fig. 3. Graphs of the estimates of correlation of life span, standard deviation of 

shared frailty σ and the regression coefficient of frailty ρz. The data were 

generated using a correlated gamma frailty model with different values of 

ρz. The estimates of σ and β were obtained using a shared frailty model. 

The life-span correlation was estimated using a correlated frailty model. 
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Fig. 4. Graphs of marginal and underlying hazards for males and females 

calculated from data on three Scandinavian twin registers, using a 

correlated frailty model. 
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	MYTHS AND REALITY 
	2.THE MYTHS 
	This myth has to do with the following version of the shared frailty model: 
	It is in the light of this important property, which might be called the “falsifiability” of a model, that we should view the historical attempts to extend the shared frailty model to get rid of the confounding problem. Simply making the univariate model non-identifiable (i.e. for the positive stable frailty distribution) corrects the confounding problem, but at what price? First, it becomes impossible to check for consistency in the shared frailty model and second, the stable frailty assumption effectively limits the modeling possibilities for the influence of covariates on survival to the case of a simple proportional hazard Cox-regression model. The role of frailty models as a tool for the correction of the non-proportionality of marginal hazards given the covariates is lost, too. This does not mean that frailty cannot follow a positive stable distribution. However, restricting ourselves exclusively to this class of distributions severely limits the flexibility of the marginal model. 
	There do exist more sensible approaches for solving the confounding problem of shared frailty models. One of them is based on extending the dimension of the frailty variable and making it equal the dimension of the survival data, i.e., introducing multivariate frailty. Yashin et al. (1995) suggested a correlated frailty model which used an additive model of gamma frailties to define a bivariate frailty distribution with a given variance and correlation coefficient as parameters. The idea of this approach is to allow for the identifiability of a marginal frailty distribution from univariate data, while limiting the identifiability of association parameters (i.e. the correlation coefficient) to the case of multivariate data analysis. In this case, the pairs of individuals with different levels of association between life spans will be distinguished by the fact that respective correlation coefficients are different. An additional advantage is that components of such a multivariate frailty have an individual interpretation that allows for interesting applications, e.g., genetic analysis of frailty by using the methods of quantitative genetics. 
	Another approach, which one could call “copula modeling”, is based on relaxing the proportional hazard assumption for the covariate effects, i.e. an arbitrary dependence of the underlying hazard on the covariates is assumed. Using a parametric or a non-parametric approach, an appropriate parametrization of the univariate survival functions given the covariates is obtained. Then, this parametrization is substituted into the so-called semiparametric or “copula” representation of a particular frailty model. In the case of the shared gamma frailty model, this representation takes the form of (8) and allows for the estimation of the association parameter from bivariate data. Here, the confounding problem does not exits, since the result of Elbers and Ridder (1982) does not apply to the arbitrary dependence of the underlying hazard on survival and the univariate submodel is not identifiable.  The representation for the correlated gamma frailty is given by (12). 
	Since the shared frailty model is nested within the correlated frailty model, it is always possible to test for whether or not the shared frailty model is appropriate for the data. It seems, however, that the concept of individual frailty, which is used in the multivariate frailty models (e.g. in the correlated gamma frailty model), provides a greater potential in most applications for building models with biologically justified constructs. 


