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Summary

In population studies on aging, the data on genetic mark-
ers are often collected for individuals from different age
groups. The purpose of such studies is to identify, by
comparison of the frequencies of selected genotypes,
“longevity” or “frailty” genes in the oldest and in
younger groups of individuals. To address questions
about more-complicated aspects of genetic influence on
longevity, additional information must be used. In this
article, we show that the use of demographic informa-
tion, together with data on genetic markers, allows us
to calculate hazard rates, relative risks, and survival
functions for respective genes or genotypes. New meth-
ods of combining genetic and demographic information
are discussed. These methods are tested on simulated
data and then are applied to the analysis of data on
genetic markers for two haplogroups of human mtDNA.
The approaches suggested in this article provide a pow-
erful tool for analyzing the influence of candidate genes
on longevity and survival. We also show how factors
such as changes in the initial frequencies of candidate
genes in subsequent cohorts, or secular trends in cohort
mortality, may influence the results of an analysis.

Introduction

In studies on the influence of genetic factors on aging
and survival, the contribution of a candidate gene to this
process is usually analyzed by comparison of the fre-
quencies of the genotypes or alleles observed in groups
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of living individuals, taken from two different, usually
aggregated, age categories (i.e., centenarians and the
younger group of individuals) (De Benedictis et al. 1997,
1998a, 1998b; Ivanova et al. 1998). When significantly
different frequencies of a gene are found in these distinct
age classes, it is interpreted as evidence of the presence
of some genetic influence on survival. With this method,
all candidate genes can be classified as “frail,” “neutral,”
or “robust” genes. Such an approach to evaluating the
genetic influence on survival is called the “gene fre-
quency method” (GF). The advantage of this method is
that it involves simple calculations. On the other hand,
however, the GF method does not use the whole poten-
tial of the data on genetic markers that were initially
collected in disaggregated form. More results and inter-
esting findings concerning genetic influence on life span
can be obtained when disaggregated data on the genetic
markers are combined with demographic or epidemio-
logical data. For example, in addition to the classifica-
tion of genes into three possible categories, one might
be interested in the estimates of relative risks, mortality
trajectories, and survival functions for populations of
individuals carrying different genes or genotypes. Such
an analysis is especially important when observed tra-
jectories of the frequencies of genotypes are nonmono-
tonic. It turns out that the estimates of these character-
istics may be obtained if, in addition to genetic markers,
demographic information is included in the analysis.

Two extensions of the GF method are suggested by
Toupance et al. (1998) and Yashin et al. ( 1998). Toup-
ance et al. (1998) use aggregated data on candidate genes
to evaluate initial frequencies, age-specific mortalities,
and survival functions. Yashin et al. (1998) use the ben-
efits of individual disaggregated data on genetic markers
to evaluate initial frequencies, relative risks, and the age
trajectories of mortality for candidate genes. Both meth-
ods use benefits of combined data on genetic markers
with demographic data on survival in the population.

In this article, we suggest several new approaches to
the analysis of data on genetic markers in aging studies.
First, we describe simulated and real data used in our
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Figure 1 Age trajectories of frequencies and their empirical es-
timates, calculated in simulation experiments for genotypes 0 and 1.
The gamma-Gompertz model for the mortalities of genotypes used is
as follows: , with ,ab x 2 b x 21 2500 0O (x) = a e [1 1 s (e 2 1)] a = 4 # 100 0 0 0b0

, , , , and .2 2 210b = .1 P = .4 s = s = .3 a = 4 # 10 b = .230 1 2 1 1

study. Second, we elucidate the idea of the traditional
GF method. It should be noted that there are two as-
sumptions tacitly underlying all versions of the GF
method. The first (assumption i) is that the initial gene
frequencies in all birth cohorts represented in the study
are the same. The second (assumption ii) is that the
mortalities for genotypes do not depend on the birth
year of the cohort. These assumptions are crucial in all
other methods discussed in this article as well. Third,
we discuss the idea of the use of demographic and ep-
idemiologic information in genetic studies and explain
how demographic information can be merged with
cross-sectional genetic data. We describe the likelihood
function of the data and discuss demographic and epi-
demiological constraints used in maximization of this
likelihood function. Fourth, we outline four approaches
to the analysis of combined data. These approaches are
called the “nonparametric method” (NP), the “relative
risk method” (RR), the “parametric method” (PR), and
the “semiparametric method” (SP). A version of the RR
method was discussed by Yashin et al. (1998). A least-
squares version of the PR method (which might be called
the “LSPR” method) was used by Toupance et al.
(1998). The NP and SP methods have never been dis-
cussed before. Fifth, we show how hidden heterogeneity
in mortality for genotypes can be taken into account. In
the Results section, we test the new methods by using
simulated data (see “Applications to Simulated Data”)
and discuss their comparative advantages and limita-
tions. Then, we apply these methods to the data for
haplotypes of mtDNA (see “Application to Data on
Haplotypes of mtDNA”). In the Sensitivity Analysis, we
investigate the effects of violation of the two assump-
tions discussed above. In particular, we consider the ef-
fects of hypothetical changes in initial gene frequencies
and of hazards for genotypes, with the birth year of the
cohorts, on age trajectories of genotypes’ proportions,
calculated from cross-sectional data. Last, we discuss the
results of these analyses and possible direction for fur-
ther research.

Material and Methods

To test the statistical methods mentioned above, we
will first apply them to simulated data. Then, we will
illustrate the use of these methods in an analysis of up-
dated genetic data on mtDNA haplotypes, obtained
from a cross-sectional sample of Italian individuals (De
Benedictis et al. 1998a), together with survival data
taken from 1992 demographic life tables of the Italian
population. The methods can, in principle, be applied
to any data on genetic markers in combination with
demographic and epidemiological information. The
analysis of the sensitivity of the results to basic assump-
tions used in survival models for individuals with se-

lected genotypes is then discussed. All calculations were
performed with the GAUSS (Aptech Systems 1996) and
MATLAB (Hanselman and Littlefield 1998) software
packages.

Simulated Data

We illustrate the main ideas of the new approaches
by using the survival model for a population with two
genotypes. However, all procedures can easily be ex-
tended to the cases of populations with three and more
genotypes. Let Si(x), be survival functions for twoi = 0,1
genotypes representing the genetic structure of some hy-
pothetical population, and let be a mar-1S (x) = S PS (x)i=0 i i

ginal survival function for an arbitrary individual in the
population, where Pi is the initial frequency of the re-
spective genotype. We assume that the forces of mor-
tality mi(x), ) for respective genotypes follow thei = 0,1
gamma-Gompertz model ab x 2 b xi i im (x) = a e /1 1 s (e 2i i i bi

, where ai, bi, and si are parameters. Vaupel1) , i = 0,1
et al. (1979), Yashin et al. (1994), and Thatcher et al.
(1998) have shown that this model fits demographic
mortality data better than the traditional Gompertz
curve. The graphs of theoretical and empirical propor-
tions in the population of two genotypes are shown in
figure 1. Altogether, data for 10,000 individuals (100
individuals for each age, for ages 10 years–110 years)
were simulated. One can see that the quality of simu-
lation is sufficient to use these data for testing our es-
timation methods.
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Figure 2 Lexis diagram of the difference between cohort and
cross-sectional data. The cross-sectional study is performed in year T.
The thicker solid line denotes a cohort born in year .T 2 x

Table 1

Absolute Frequencies of mtDNA Haplogroups in Individuals of Various Ages Sampled from the Italian Population

MTDNA
HAPLOGROUP

NO. IN AGE CLASSES

<15 Years 16–25 Years 26–35 Years 36–45 Years 46–55 Years 56–65 Years 66–75 Years >100 Years

H 3 16 37 20 14 12 6 85
I 0 0 1 3 0 2 1 8
J 0 0 3 2 3 4 1 23
K 0 4 4 3 2 4 4 15
T 0 4 8 5 4 6 2 18
U 2 4 10 11 9 2 8 26
V 0 1 1 0 0 1 2 11
W 1 2 2 3 1 1 0 3
X 0 0 5 1 0 1 1 8
A 0 3 9 8 0 6 2 15

Total 6 34 80 56 33 39 27 212

Genetic Data for mtDNA

The genetic data collected in the study of Italian cen-
tenarians are shown in table 1. One can find a detailed
description of the Italian data in the work of De Be-
nedictis et al. (1998a) and Yashin et al. (1998).

The Idea of the GF Method

Let T be the year of data collection, x be the age
variable, and , be the number of x-N (x,T 2 x) i = 0,1i

year-old individuals carrying the ith genotype observed
in the cross-sectional study. Here, , wherex = 0,1,) ,X
X is the oldest age represented in the study. The cross-
sectional sample represents several cohorts of individuals
born in different years, and the argument merelyT 2 x
emphasizes the fact that the counted individuals belong
to a cohort born in year (see fig. 2). In our esti-T 2 x
mation procedures, we will consider only two genes or
genotypes. The number “0” is associated with the can-
didate genotype. The number “1” is associated with any
other, non-“0” genotype. This method can easily be ex-
tended to the case of a population with more genotypes.
However, the benefits of such an extension should al-
ways be weighed against the loss of power in the esti-
mation procedure, which is the result of an increase in
the number of parameters to be estimated.

The simplest way to assess the effect of genes on lon-
gevity, with use of these data, is to aggregate the sample
into two age groups. The “control,” or “younger,”
group contains all individuals with age !100 years.
These individuals are of two genotypes, 0 and 1, and
their numbers are NiY, . The “centenarian” groupi = 0,1
contains individuals with age >100 years. The numbers
of respective genotypes in this group are NiC, .i = 0,1
Here, the indices “Y” and “C” denote the control and
the centenarian groups, respectively. The empirical es-
timates of relative frequencies , with andp̂ i = 0,1 j =ij

, in these two groups areY,C

Nij
p̂ = ; i = 0,1; j = Y,C .ij N 1 N0j 1j

These estimates can be used to test the null hypothesis
(i.e., that the frequencies of a given genotype are the
same in both age groups) against the alternative (i.e.,
that they are not). This is, in essence, the GF method,
as it has been discussed in many publications (e.g., see
Proust et al. 1982; Takata et al. 1987; Schächter et al.
1993; De Benedictis et al. 1997). This “model-free”
method does not use additional information. However,
the use of demographic information about the popula-
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tion under study may substantially improve our under-
standing of the role of genes in aging and survival.

Demographic Data: Why Are They Helpful?

Let us first consider the cohort study. The benefits of
the use of demographic information about marginal sur-
vival in the population result from the possibility of the
use of the representation for marginal survival function,
S(x)—which can be taken from the cohort demographic
life tables—as a discrete mixture of the respective sur-
vival functions for genotypes. Let us assume that we are
dealing with two genotypes 0 and 1, as described above.
Let Si(x) and pi(x), , be the survival functions andi = 0,1
frequencies of the respective genotypes, and let p (0) =0

and be the initial frequenciesP = P p (0) = P = 1 2 P0 1 1

for the 0 and 1 genotypes, respectively. For simplicity,
we will use the notation for the frequencyp(x) = p (x)0

of the 0 genotype at age x years and the notation 1 2
for the frequency of genotype 1 at age xp(x) = p (x)1

years. Then, the relationships between S(x), Si(x), i =
, and p(x) are, according to the method of Vaupel0,1

and Yashin (1985), as follows:

S(x) = PS (x) 1 (1 2 P)S (x) (1)0 1

and

PS (x)0
p(x) = . (2)

( ) ( ) ( )PS x 1 1 2 P S x[ ] [ ]0 1

When functions S(x) and p(x) are known exactly for the
age interval (0,X), where X is the maximum age in the
study, the initial gene frequency for the 0 ge-P = p(0)
notype is also known, and the survival functions for the
two genotypes can be calculated, from equations (1) and
(2), as

p (x)S(x)iS (x) = , i = 0,1 . (3)i Pi

Thus, when the trajectories for genotype frequencies are
known exactly, the addition of demographic information
in the form of the marginal survival function solves the
problem of determining the genetic influence on survival.
One can easily show that this result does not depend on
the number of genotypes observed in the study. In reality,
proportions of genotypes are not known exactly. The
substitution of empirical estimates of pi(x) and Pi into
equation (3) may create problems, since trajectories for
the estimates of survival functions for genotypes may
become nonmonotone (thus, respective estimates of
mortalities could have negative values). In this case, sta-
tistical methods are needed to estimate survival char-
acteristics of genotypes.

Merging Demographic Information with Cross-
Sectional Data

Genetic data for humans are usually collected in a
cross-sectional study, in some year T. If the proportions
of genotypes were known exactly, the use of demo-
graphic information could solve the problem of genetic
influence on survival, in exactly the same way as with
the cohort data. Unfortunately, the proportions of ge-
notype 0 at age x, p are not known exactly.(x,T 2 x),
As in the case of the GF method, we assume that

, for all cohorts born in year , withp(0,T 2 x) = P T 2 x
. Often, the numbers Ni , wherex = 0,1,2) ,X (x,T 2 x)

, are known, beginning with an age of x* yearsi = 0,1
10. In this case, one has to assume that ∗p(x ,T 2 x) =

(i.e., the gene frequencies at age x* years are the same∗P
for all birth cohorts). For the cross-sectional data, equa-
tions (1) and (2) can, therefore, be rewritten as

˜ ˜ ˜S(x) = PS (x) 1 (1 2 P)S (x) (4)0 1

and

˜PS (x)0
p̃(x) = . (5)

˜ ˜[ ]PS (x) 1 (1 2 P)S (x)0 1

The survival function in the left-hand part of equa-S̃(x)
tion (4), which can be expressed as

x 
˜exp 2 m(u)du ,E 

 0

can be taken from a cross-sectional demographic life
table for the year T for the respective population, and,
hence, it is a known function of x. Note that function

characterizes survival in the synthetic (i.e., artificial)S̃(x)
cohort, with the mortality . The pro-m̃(x) = m(x,T 2 x)
portion of individuals, of age x years, carrying candidate
genes in the synthetic cohort is Re-p̃(x) = p(x,T 2 x).
spective survival functions for individuals carrying 0 and
1 genotypes are

x 
˜ ˜S (x) = exp 2 m (u)du ,i E i 

 0

with , . Empirical estimatesm̃ (x) = m (x,T 2 x) i = 0,1i i

can be calculated for each age fromp̂(x) x = 0,1 ) ,X
the numbers Ni( ), asx,T 2 x i = 0,1

N (x,T 2 x)0
p̂(x) = . (6)

[ ]N (x,T 2 x) 1 N (x,T 2 x)0 1
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Thus, we assume that the data were obtained from bi-
nomial sampling with probability of success p̃(x) =

. As in the cohort case, functions ˆp(x,T 2 x) S (x) =i

calculated from the analogs of equation (3)˜ ˆp̂ (x)S(x)/p ,i i

with replaced with and replaced withˆp (x) p (x) S(x)i i

, do not necessarily decline monotonically, and,S̃(x)
hence, they—strictly speaking—cannot be considered as
the estimates of , (i.e., estimates of survivalS̃ (x) i = 1,2i

functions for genotypes). This is why statistical methods
for estimating the survival functions , areS̃ (x) i = 0,1i

needed. In this article, we show that methods that are
done on the basis of the maximum-likelihood procedure
can be used successfully in the joint analysis of genetic
and demographic data to solve this problem.

The Likelihood Function of Genetic Data

The following likelihood function of genetic data is
the basis for an estimation procedure, in all of the meth-
ods discussed in the sections that follow:

X

N (x,T2x) N (x,T2x)0 1[ ]L = P p(x,T 2 x) 1 2 p(x,T 2 x) . (7)
∗x=x

Here, N0( ) and N1( ), ∗ ∗x,T 2 x x,T 2 x x = x , x 1
, are the number of individuals with and without1, ) X

the genotype 0, respectively, aged x years at time T. Since
we identify p( ) with p(x), which satisfies equa-x,T 2 x
tion (5), the likelihood function becomes

N (x,T2x)0X ˜ PS (x)0 L = P ˜ ˜∗x=x PS (x) 1 (1 2 P)S (x) 0 1

N (x,T2x)1˜ (1 2 P)S (x)1 # . (8)˜ ˜PS (x) 1 (1 2 P)S (x) 0 1

The parameter P, as well as the two survival functions
, for genotypes, are unknown. Their valuesS̃ (x) i = 0,1i

at each age x years have to be estimated on the basis of
the available data. Altogether, parameters∗2(X 2 x ) 1 1
have to be estimated (i.e., parameters for each∗X 2 x
of the two survival functions, plus P.) Note that here we
assume that ,∗S (x ) = 1 i = 0,1.i

Demographic, Epidemiological, and Other Constraints

One cannot estimate the initial frequency P and the
two survival functions , , by maximizingS̃ (x) i = 0,1i

equation (7) without additional conditions, since this
model is nonidentifiable. The demographic condition of
equation (4), where is known, allows us to reduceS̃(x)
the number of model parameters to , since∗X 2 x 1 1
equation (4) includes conditions (one for each∗X 2 x
age). Simulation studies show that these parameters are
identifiable. Thus, the likelihood function of equation

(7) has to be maximized with use of equation (4). Some-
times, additional conditions can stem from the results
of epidemiological studies in which the values of relative
risks r(x), for respective genotypes, are estimated at some
selected age interval. For example, the ratio of hazards
for two genotypes,

m (x,T 2 x)0 = r(x) , (9)
m (x,T 2 x)1

may be known for . In this case, the like-x = x ,x , ) ,x1 2 n

lihood function of equation (8) has to be maximized
with use of constraints in equations (4) and (9). Hence,
the number of model parameters becomes ∗X 2 x 2

. When the sample size of genetic data is largen 1 1
enough, the NP method may provide acceptable esti-
mates for survival functions , of genotypesS̃ (x) i = 0,1i

and for P.

The NP Method

The NP method allows us to estimate values∗X 2 x
of function , without any assumptions about its par-S̃ (x)0

ametric form (that is why we call it the “NP method”),
and to estimate P for genotype 0. For these purposes, it
is better to represent in terms of conditional prob-S̃ (x)0

abilities of death (i.e., the probability that death will0qx

happen at the interval between x and , given thatx 1 1
it did not happen until age x years). Thus, can beS̃ (x)0

represented as The estimation canx21 0S̃ (x) = P (1 2 q ).0 y=0 y

be made with the maximization of equation (8) under
the demographic constraint of equation (5), with respect
to parameters , and0 ∗ ∗ 0q y = x , x 1 1, ) ,X P,0 < q <y y

; . When and P are estimated, the sur-˜1 0 < P < 1 S (x)0

vival function for genotype 1 is calculated from equation
(4). These estimates can be obtained even without the
additional information provided by equation (9), when
the sample size of genetic data is large enough.

When the sample size of the data is small, the NP
estimates may be unreliable. In this case, additional con-
ditions that reduce the number of estimated parameters
may improve the power of the estimates. In this article,
we consider three kinds of such conditions. The first
condition assumes proportionality among hazards as-
sociated with respective genes or genotypes (the RR
method). The second condition assumes that the survival
functions of genotypes , are of a specific par-S̃ (x) i = 0,1i

ametric form (the PR method). The third condition as-
sumes parametric form for only one survival function,
say for . The other survival function, , is cal-˜ ˜S (x) S (x)0 1

culated with the SP method.

The RR Method

This method assumes that ,m (x,T 2 x) = zm (x,T 2 x)1 0

, which implies∗ ∗x = x , x 1 1, ) ,X
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z ∗˜ ˜S (x) = S (x) , x = x 1 1, ) ,X . (10)1 0

Here, hazards and are˜ ˜m (x) = m (x,Tx) m (x) = m (x,Tx)0 0 1 1

associated with survival functions and , re-˜ ˜S (x) S (x)0 1

spectively. Parameter z is the unknown relative risk as-
sociated with the genotypes collectively labeled as “1.”
If , then individuals carrying the 0 genotype havez 1 1
a survival advantage, and the genotype is called a “ro-
bust genotype.” If , then the situation is reversed,z ! 1
and 0 is a “frailty genotype.” Under this assumption,
function in equations (8) and (4) must be replacedS̃ (x)1

by . Let us assume that function in equationz˜ ˜S (x) S(x)0

(4) is known (i.e., demographic information is available).
Then, conditions in equations (4) and (10) leave only
two unknown parameters, z and P. Equation (9) reduces
the problem to the estimation of parameter P only. When
the estimates of z and P are known, , ∗S̃ (x) x = x 10

can be calculated from equation (4).1, ) ,X
The parameter estimates can be obtained by the

method of constraint likelihood maximization or by an
algorithm that involves the repetition of the following
steps. Make an initial guess of(0)S̃ (x)0

) and solve the maximum-like-(0)˜ ˜ ˜S (x) (e.g., S (x) { S(x)0 0

lihood problem for parameters P(0) and z(0) by use of
equations (8) and (10). Then, calculate from equa-(1)S̃ (x)0

tions (4) and (10) for the given parameters P(0) and z(0).
Take as the next guess and calculate P(1) and z(1)(1)S̃ (x)0

by use of equations (8) and (10), and so forth. Our
simulation studies show that this procedure converges
with the maximum-likelihood estimates of parameters z
and P. This procedure can be easily extended when data
are available for observed covariates (e.g., location and
sex) (Yashin et al. 1998).

The PR Method

In the PR method, survival functions , areS̃ (x) i = 0,1i

described parametrically. Such a specification reduces the
number of model parameters. For example, one can as-
sume that the force of mortality for genotype i follows
the Gompertz-Makeham curve:

b x1m̃ (x) = c 1 a e , i = 0,1 . (11)i i i

Here, parameters ci, ai, and bi characterize the survival
functions of genotype i, , in the data from a cross-i = 0,1
sectional study. In the case of specification (11), one has
to estimate seven parameters. Such estimates can be ob-
tained by use of the constraint maximum-likelihood
method—that is, by maximization of equation (8) with
constraints (4) and (11), with consideration given to the
fact that

x∫ m (u,T2u)du˜ 0 iS (x) = e , i = 0,1 .i

Other estimation procedures can also be suggested. For
example, the constraint LSPR method can be considered
as an alternative to the maximum-likelihood procedure.
A version of such a method with an ad hoc procedure
for consideration given to constraints was used by Toup-
ance et al. (1998). The benefits and limitations of these
methods are reviewed in the Discussion.

The SP Method

To minimize the number of technical assumptions
about the parametric structure of the survival curves for
genotypes, one can assume that only one survival func-
tion—say, —is described parametrically. For ex-S̃ (x)0

ample, one can assume that the force of mortality for
genotype 0 follows the Gompertz-Makeham curve
(equation [11]) specified for . Here, parameters c0,i = 0
a0, and b0 characterize the survival functions of genotype
0 in a cross-sectional study. When parametric specifi-
cation for is chosen, and if the marginal survivalS̃ (x)0

function is known, then can be derived from˜ ˜S(x) S (x)1

equation (4), as a function of parameters c0, a0, b0, and
P. This function must be substituted into the likelihood
function given in equation (8). After that, direct maxi-
mization of equation (8) gives the estimates of param-
eters c0, a0, b0, and P. Now, the estimates of survival
characteristics for respective genotypes can be easily cal-
culated. Note that, for some values of the parameters,
the function —calculated asˆ ˆ ˜S (x) S (x) = S(x) 21 1

—may be a nonmonotone function of x and,˜PS (x)/1 2 P0

hence, cannot be used, in the likelihood function (8), as
a survival function. In this case, one must approximate

by an appropriate survival function. For example,Ŝ (x)1

one can use survival function , such that∗ ∗˜ ˜S (x) S (x) =1 1

, if , and , if∗ˆ ˆ ˆ ˜ ˆS (x) S (x) < S (x 2 1) S (x) = S (x 2 1)1 1 1 1 1

. Such a precaution must accompanyˆ ˆS (x) 1 S (x 2 1)1 1

any method using equation (4) to calculate .Ŝ (x)1

Consideration of Population Heterogeneity

The fact that heterogeneity in mortality may bias the
results of survival analyses when its possible presence is
ignored in the estimation algorithm is well known (Vau-
pel et al. 1979; Vaupel and Yashin 1985). The use of
the NP method, which estimates the respective ,0q x =x

, is the most flexible way to control for∗ ∗x , x 1 1, ) ,X
the presence of heterogeneity. To correct for heteroge-
neity in the RR method, we use the gamma-frailty model
(Vaupel et al. 1979) for a population of individuals with
genotype 1. In accordance with this model, m (x) =1

, where the random variable Y is gamma distrib-Yzm (x)0

uted with mean 1 and variance j2. In this case,

1
2˜ ˜ 2S (x) = [1 2 j z ln S (x)] ,j1 0

and, in addition to z and P, one has to estimate parameter
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Figure 3 Age trajectories of gene frequencies for the 0 genotype,
obtained in simulation experiments. These include simulated trajec-
tories (denoted by a thick solid line) and their empirical estimate (de-
noted by a short dashed line), as well as estimates obtained by the NP
method (denoted by a medium solid line), the SP method, (denoted
by a thin solid line), the RR method (denoted by a dashed-dotted line),
and the PR method (denoted by a long dashed line). The PR and SP
methods were done with use of the Gompertz parametrization of mor-
tality curve for the 0 genotype, as follows: .b x0m (x) = a e0 0

Table 2

Estimates of P and z for mtDNA Haplogroups J and
H

Haplogroup P Estimate z Estimate (95% CI)

J .04 1.19 (1.05–1.37)
H .39 1.00 (.97–1.04)

Figure 4 Age trajectories of gene frequencies for the 0 genotype,
obtained in simulation experiments. These include simulated trajec-
tories (denoted by a thick solid line) and their empirical estimate (de-
noted by a short dashed line), as well as estimates obtained by the SP
method (denoted by a thin solid line), the RR method (denoted by a
dashed dotted line), the PR method (denoted by a long dashed line),
and the HRR method (denoted by a thin short-dashed line). The PR
and SP methods use the gamma-Gompertz specification of mortality
curve for the 0 genotype, as follows: ab x 2 b x00 0m (x) = a e [1 1 s (e 20 0 0 b0

.211)]

j2. The respective estimation procedure is called the
“HRR method.”

In the case of the PR method, heterogeneity is taken
into account with use of gamma-Gompertz mortality
models (Yashin et al. 1994) for genotypes, instead of
with use of traditional Gompertz or Gompertz-Make-
ham curves. An alternative model assumes that this force
of mortality follows the logistic gamma-Makeham curve
(Yashin et al. 1994).

b xic 1 a ei i
m (x,T 2 x) = , i = 0,1 . (12)i a2 b xi i1 1 s c x 1 (e 2 1)[ ]i i bi

Specification (12) requires the estimation of nine param-
eters; ai, bi, ci, and si ( ); and P. To control fori = 0,1
heterogeneity in the SP method, it is enough to assume
that the survival function is characterized by theS̃ (x)0

mortality rate in equation (12) (when ).i = 0

Results

Applications to Simulated Data

To test the approaches described in the preceding sec-
tions, we first applied them to simulated data. The
graphs of empirical and estimated proportions for ge-
notype 0 are shown in figure 3. Here, the estimates for
the PR and SP methods were obtained with use of Gom-
pertz’s parametrization of respective mortality curves.
(Note that the data were simulated with the gamma-
Gompertz mortality curve). One can see that the PR and
SP methods give a better fit to the data than does the
RR method. Figure 4 shows similar estimates, obtained
with the gamma-Gompertz specification of respective
mortality curves. Such a specification allows us to con-
trol for unobserved heterogeneity in mortality. One can
see that the quality of estimation with the SP and PR
methods improves when unobserved heterogeneity is
taken into account. Use of the HRR method results in
the estimation . So, the HRR estimates coincide2j = 0
with the RR estimates, for this example.

Application to Data on Haplotypes of mtDNA

Table 2 shows the results of an analysis of Italian data
for mtDNA haplogroups H and J, with use of the RR
method. To obtain a 95% confidence interval (CI) for
the estimate of the frailty parameter, 100 bootstrap rep-
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Figure 6 Observed frequencies of mtDNA haplogroup J (de-
noted by blackened diamonds) in a sample of Italian data, together
with estimated cross-sectional age trajectories obtained with the SP
method (denoted by a thick solid line), the PR method (denoted by a
thin solid line), the RR method (denoted by a dotted line), and the
HRR method (denoted by a dashed line). The PR and SP methods use
the gamma-Gompertz specification of mortality curve for the 0
genotype.

Figure 5 Observed frequencies of mtDNA haplogroup H (de-
noted by blackened diamonds) in a sample of Italian data, together
with estimated cross-sectional age trajectories obtained with the SP
method (denoted by a thick solid line), the PR method (denoted by a
thin solid line), the RR method (denoted by a dotted line), and the
HRR method (denoted by a dashed line). The PR and SP methods use
the gamma-Gompertz specification of mortality curve for the 0
genotype.

licates (Weir 1996, p. 53) of each age class were gen-
erated, and the corresponding values for P and z were
estimated for the H and J haplogroups. The estimated
values for z show that haplogroup H clearly has no effect
on survival, whereas haplogroup J has a significant pos-
itive effect. A similar result concerning haplogroups J
and H was obtained previously by Yashin et al. (1998),
who used a smaller data sample. Figures 5 and 6 show
the observed relative frequencies, together with the age
trajectories of the frequencies, computed with the esti-
mates obtained with the RR method (denoted by a dot-
ted line). Note that the trajectories interpolate exactly
the empirical frequencies of the sample of centenarians,
the size of which is much larger than the size of the
samples of younger ages.

It should be noted that the NP estimates are not shown
in these graphs because the use of this method requires
a larger sample size of the data. The PR and SP methods,
described in respective sections, were tested with the
same data. Figures 5 and 6 show the age trajectories of
frequencies for respective haplogroups (denoted by thin
solid and thick solid lines, respectively). Clearly, these
methods produce nonmonotonic trajectories of gene fre-
quencies. Such trajectories correspond to the haplo-
groups with intersecting hazard rates for haplogroup H
(fig. 7) and haplogroup J (fig. 8). Figure 7 shows the
logarithms of the age trajectories of hazards for hap-
logroup H (denoted by a solid line) and for the rest of
the population (denoted by a dotted line). Figure 8 shows
similar graphs for haplogroup J. Note that, in the case

of parametric hazards, the classification of genotypes
into “robust,” “frail,” and “neutral” categories is not
necessary, since the entire trajectories of the hazards are
estimated.

Sensitivity Analysis

In this section, we investigate the effects of violation
of assumptions i and ii, discussed in the Introduction.
For this purpose, we assume that mortalities for two
different genotypes are related by the proportionality
condition. The empirical justification for such an as-
sumption is made on the basis of the results of Yashin
et al. (1998), in which the use of the proportional-haz-
ards assumption in the RR method, applied to Italian
data on genetic markers, confirmed earlier findings ob-
tained with the traditional GF method. Theoretical jus-
tification of the proportional–hazards model have been
discussed by Yakovlev et al. (1995). Their results suggest
that relative risk may be considered as a measure of the
vulnerability, of respective genotypes, to the process of
lesion formation associated with aging. Other applica-
tions of this model have been discussed by Cox and
Oakes (1984). Space limitations do not allow us to per-
form similar analyses of the other models discussed in
this article. The goals of the present sensitivity analysis
are to investigate the following:

1. to what extent depends on the param-p(x,T 2 x)
eter z, for the fixed and time-independent initial fre-
quency of the genotype , and on survival func-p(0,t) = P
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Figure 7 Logarithms of mortalities for individuals with mtDNA
haplotype H (denoted by a thick solid line) and without haplotype H
(denoted by a dotted line). Estimates are made with use of the PR
method, the SR method, and the HRR method.

Figure 8 Logarithms of mortalities for individuals with mtDNA
haplotype J (denoted by a thick solid line) and without haplotype J
(denoted by a dotted line). Estimates are made with use of the PR
method, the SR method, and the HRR method.

tions for genotypes, independent of the birth year of the
cohort (assumptions i and ii hold);

2. to what extent does depend on a vari-p(x,T 2 x)
able initial frequency p(0,t), for a fixed (assump-z 1 1
tion ii holds);

3. to what extent does ) depend on changesp(x,T 2 x

in a survival of the genotypes for different cohorts, when
(assumption i holds) and z is constant; andp(0,t) = P

4. to what extent does ) depend on a pos-p(x,T 2 x
sible change in z of the birth year of the cohort, when

(assumption i holds).p(0,t) = P
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Figure 10 Survival functions for genotype 0: in the old cohort,
(denoted by a solid line); in the hypothetical young cohort,S (x) = S(x)0

(denoted by a dotted line); and, in the synthetic cohortS (x) = S (x)0 y

constructed from cross-sectional data, (denoted by a dashed line).S̃ (x)0

Figure 9 Logarithms of three mortality rates: mortality m(x) (de-
noted by a solid line), in the cohort of Italian females born at the end
of the 19th century (Del Panta and Rettaroli 1994); mortality

(denoted by a dotted line), in the hypothetical “young”m (x) = 0.3m(x)y

cohort; and mortality (denoted by a0.7Õ(x) = [1 2 (105 2 x)]m(x)105
dashed line) in the synthetic cohort constructed from cross-sectional
data. m(x) and my(x) are used as baseline mortalities in a sensitivity
analysis.

To perform this analysis, we first selected survival
function , which we call the “reference” survivalS(x)
function. To make our analysis more realistic, we con-
structed by using life-table data for the Italian pop-S(x)
ulation, taken at the end of the 19th century (Del Panta
and Rettaroli 1994). To model the improvement in sur-
vival, we used the model , in which a(t) declineda(t)S(x)
linearly, from 1 to .3, over a time of 105 years. Here,

. We assume that life expec-a(T) = 1 2 [.7/105(t 2 t )]0

tancy in the youngest cohort is ∼85 years, which cor-
responds to . The cohort with the survival func-a(t) = .3
tion is characterized as a “young” cohort..3S (x) = S(x)y

Note that the survival function Sy(x) is hypothetical, and
future mortality for the youngest cohort in the study is
unknown. We then used , , and Sy(x) to modela(t)S(x) S(x)
survival functions for genotypes in the old (i.e., subjects
who were born in some year t0 in the past), intermediate
(i.e., subjects who were born in the year t, t ! t !0

), and young (i.e., subjects were born in the yeart 1 1050

) cohorts, respectively. Figure 9 shows graphst 1 1050

for three mortalities, ,m(x) = m(x,t ) m (x) = m(x,t 10 y 0

, and , where is105) m(x,t 1 105 2 x) m(x,t 1 105 2 x)0 0

the mortality, in the synthetic cohort, corresponding to
hypothetical cross-sectional data. Figure 10 shows the
graph of the survival function in the synthetic cohort

, corresponding to the year , along withS (x) T = t 1 1050 0

graphs of two cohort survival functions, andS(x)
. One can see that the function appears.3 ˜S (x) = S(x) S(x)y

to be different from the respective cohort functions. Note

that if assumptions i and ii hold, then functions andS̃(x)
coincide. However, in the presence of secularS(x,T 2 x)

trends in mortality, . In general,S̃(x) ( S(x,T 2 x)
is not a survival function because it can be aS(x,T 2 x)

nonmonotone function of age.
To investigate the effects of risk parameters and initial

frequencies on age trajectories of the proportions of ge-
notype, we will consider two hypothetical subpopula-
tions (one consisting of individuals carrying a given ge-
notype 0, and the other—population 1—consisting of
individuals without the genotype). We used the RR
model for the cohort born in year t0, with and

and then with andzS (x,t ) = S (x,t ) S (x,t ) = S (x)1 0 0 0 0 0 y

. Here, S0(x,t0) and S1(x,t0) are cohortzS (x,t ) = S (x,t )1 0 y 0

survival functions for the respective genotypes, and z is
the value of the relative risk. The cross-sectional trajec-
tories of the proportion of genotype 0—again denoted
by —were computed with equation (3), withp(x,T 2 x)

for all . Figure 11 shows the his-p(0,t) = P t < t < T0

tograms of parameter estimates, obtained in 100 sim-
ulations of genetic data for 10,500 individuals (assump-
tions i and ii hold). The true values of these parameters
are and . The survival functions areP = .3 z = 1.1

and . The marginal survival func-zS (x) = S(x) S (x) = S(x)0 1

tion was taken to be . FigurezS(x) = PS (x) 1 (1 2 P)S (x)0 0

12 shows how the cross-sectional trajectory of genotype
frequency depends on parameter z, in thep(x,T 2 x)
absence of secular trends, in the survival of a cohort
(assumptions i and ii hold). In this case, co-p(x,T 2 x)
incides with the age trajectory of the genotype propor-
tion in any cohort. The experiments were done for two
values of relative risk, and (thus, geno-z = 1.1 z = 1.5
type 0 is robust), with either survival function

or . The initial frequency chosenS (x) = S(x) S (x) = S (x)0 0 y
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Figure 11 Histograms of estimates of initial frequencies P (a)
and relative risk z (b), obtained from simulated data (10,500 individ-
uals and 100 samples), with the RR method. The true values of these
parameters are , , , andP = .3 z = 1.1 S (x) = S(x) S(x) = PS (x) 1 (1 20 0

.zP)S (x)0

Figure 12 Age trajectories of the relative frequency of genotype
0 (the robust genotype), under assumptions i and ii. The trajectories
are reported for various values of the parameter (RR model)z 1 1
and for different baseline survival functions, as follows: ,z = 1.1

(denoted by a dashed line), , (denotedS (x) = S(x) z = 1.1 S (x) = S (x)0 0 y

by a dotted line), , (denoted by a thick solid line),z = 1.5 S (x) = S(x)0

and , (denoted by a thin solid line).z = 1.5 S (x) = S (x)0 y

was . It is obvious that should increaseP = .1 p(x,T 2 x)
with age x. The interesting point here is that the most
relevant change in frequency occurs in very old cohorts;
this result justifies the relevance of studying groups of
centenarians. Moreover, the high mortality among both
genotypes, which occurs when , enhances theS (x) = S(x)0

effect of “robustness” on the gene frequency. The pres-
ence of hidden heterogeneity in mortality for genotypes
can mask this effect.

Let us now analyze the effect of a change in initial
frequency of genotype 0 (assumed to be robust—i.e.,
with ) in the birth cohorts in a cross-sectional tra-z 1 1
jectory of gene frequency . If the initial fre-p(x,T 2 x)
quency in the cohort born in year t decreases withp(0,t)
time, then the rate of increase in frequency observed in
a cross-sectional trajectory is obviously enhanced. How-
ever, if p(0,t) increases with time, then the frequency

, measured in a cross-sectional study, can de-p(x,T 2 x)

crease, at least when . This last case is shown inz =∼ 1
figure 13, in which it is assumed that p(0,t) varies lin-
early, from .1 for (i.e., for the cohort of people oft = t0

age 105 years in the cross-sectional sample) to .4 for
(i.e., the cohort of newborns in the cross-t = t 1 1050

sectional sample). Such a rate of change in the initial
frequency is purely hypothetical; however, the simula-
tion shows that, if it had occurred in a real population,
and if the data drawn from a cross-sectional sample of
age 10–70 years were analyzed by simply comparing
genotype frequencies in different age classes, then the
genotype would have been classified as a frailty geno-
type. This example shows that possible changes in the
initial proportions must be carefully controlled, because
they may seriously bias the results of standard analysis
of gene frequencies or may even mask completely the
effect of a favorable gene.

Figure 14 shows the results of the numerical experi-
ments aimed at investigating the extent to which the
cross-sectional trajectory p( ) depends on changesx,T 2 x
in the survival of different cohorts, when the initial fre-
quency is kept constant (assumption i). Since , ge-z 1 1
notype 0 is robust; as expected, the cross-sectional tra-
jectory of this genotype lies between the “longitudinal”
trajectories that would be obtained with use of the sur-
vival functions pertaining to the oldest and the youngest
cohorts. It is clear that the differences between the tra-
jectories increase for the larger values of z. However,
since the main effect of the presence of a robust and of
a frail subpopulation is seen in populations with older
ages, the demographic characteristics of older cohorts
strongly influence the cross-sectional trajectory.
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Figure 13 Effect of an increase in the initial frequency of the
robust genotype 0 with the birth year of the cohort, under assumption
ii. The graphs show the cross-sectional trajectories of genotype fre-
quencies for various values of the parameter z (RR model) and the
different baseline survival functions, as follows: ,z = 1.5 S (x) = S(x)0

(denoted by a thick solid line); , (denoted by a thinz = 1.1 S (x) = S(x)0

solid line); and , (denoted by a dashed line). It isz = 1.1 S (x) = S (x)0 y

assumed that p(0,t) increases linearly, from .1 for (i.e., for thet = t0

cohort of people of age 105 years, in the cross-sectional sample) to .4
for (i.e., the cohort of newborns in the cross-sectionalt = t 1 1050

sample).

Figure 14 Comparison of cross-sectional and longitudinal tra-
jectories of the frequency of genotype 0, when secular trends in the
survival functions occur. Longitudinal trajectories are shown for

(denoted by a short dashed line) and (denotedS (x) = S(x) S (x) = S (x)0 0 y

by a thick solid line). The cross-sectional trajectories (denoted by a
thin solid line) were computed under the assumption that the survival
function changed, from for the oldest cohort toS (x) = S(x) S (x) =0 0

for the youngest cohort. Initial frequencies are assumed to beS (x)y

independent of the year of birth and are given either as orP = .1
. Panels a and b correspond to and , respectively.P = .3 z = 1.1 z = 1.5

To analyze the effect of a variable risk, z was assumed
to decline with t—for example, from the oldest cohort
(with birth year ) to the youngest cohort (with birtht = t0

year t of )—in accordance with the expo-T = t 1 1050

nential law

[ ]z(t) = (z 2 z )exp 2r(t 1 105 2 t) 1z ,2 1 0 1

with and for several values of param-z = 1.5 z = 0.951 2

eter r. The effects of a change in the risk z, with the birth
year t of the cohort, are shown in figure 15.

One can see that, with this model, the change in z
causes nonmonotonic cross-sectional trajectories of the
genotype frequency. In particular, this example shows
that a comparison of genotype frequencies for only two
age groups (the group of the 80-year-old subjects and
the group of centenarians) may not help in the detection
of genetic effects.

Discussion

The present study shows the benefits of combining
genetic methods and data with the methods and data of
demography, epidemiology, and biostatistics, to address
questions concerning the genetic nature of the human
life span. Although relatively simple hypotheses about
the presence and type of genetic influence on survival

can be tested by use of the traditional GF method, results
obtained with this method often do not satisfy research-
ers interested in more-fundamental aspects of this influ-
ence. For example, the age-specific hazard rates, survival
functions, or values of relative risks for respective genes
or genotypes give us more information about the roles
of genes in aging and life span than is provided by just
the classification of genes as robust, frail, or neutral. To
estimate these characteristics, additional data and more-
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Figure 15 Age trajectories of gene frequencies in a hypothetical
cross-sectional study, when and , withz(t)S (x,t) = S (x) S (x) = S(x)1 0 0

, for , ,z(t) = (z 2 z )exp[2r(105 2 t)] 1 z z = 1.5 z = 0.95 r = .062 1 1 1 2

, and . For comparison, the cohort trajectories of gener = .14 r = .18
frequencies corresponding to survival function withzS(x) = S(x) z =

(denoted by a solid line) and (denoted by a dashed dotted1.5 z = 0.95
line) are also shown.

sophisticated models are required. Which data and
which models have to be used?

For humans, genetic data usually come from cross-
sectional (not cohort) studies, and, hence, gene frequen-
cies are compared among individuals from different co-
horts. For this reason, demographic aspects of aging and
survival in populations with different birth cohorts must
be taken into account in the analysis of data on genetic
markers. It turns out that the use of demographic and
epidemiological information, together with genetic data,
may substantially improve the results of such an analysis.
Demographic data are now widely available and can be
accessed easily. Also, the range of available epidemio-
logical data is rapidly increasing. Development of meth-
ods that combine demographic, epidemiological, and ge-
netic information will enhance our ability to investigate
complicated problems of aging and longevity. With more
information and richer data, more characteristics of ge-
netic influence on survival can be evaluated. All the new
methods described in this article allow us to estimate
survival and hazard functions for genotypes. Such esti-
mates cannot be obtained with the GF method and use
of genetic data alone.

The methods discussed in this article are based on the
maximum likelihood–estimation procedure. This allows
us to test statistical hypotheses about the functional form
of hazard functions, by using the likelihood-ratio test.
Since the role of candidate genes in the human life span
can be masked by the effects of other genes and unob-
served environmental factors, methods capable of con-
trolling for hidden heterogeneity in mortality are needed

(Vaupel et al. 1979; Vaupel and Yashin 1985). We show
that all of the methods discussed in this article can be
adjusted to control for hidden heterogeneity. When dem-
ographic or epidemiological data are used, instead of
marginal survival or risk functionsS̃(x) r(x) =

, the respective likelihood functions of thesem (x)/m (x)0 1

data must be included in the joint likelihood function,
which we have to maximize.

The GF method can control for the effects of other,
nongenetic factors on survival that are measured in
cross-sectional studies (i.e., location and sex). However,
use of this method requires stratification of the available
data (i.e., by location or sex). This stratification require-
ment may substantially reduce the power of the esti-
mation procedure, since the sample sizes of the data, in
each stratum, may become small. For this same reason,
it would be difficult to address questions about the ef-
fects of interaction of nongenetic factors on candidate
genes by use of the GF method. The use of aggregated
data, with the inevitable loss of information, is another
weakness of the GF method.

The proportional-hazards model for genotypes that is
used in the RR method may capture major differences
in the survival of genotypes when respective hazard
curves do not intersect. The idea of proportionality of
hazards, which was suggested by Cox (1972), has been
widely used in demography, epidemiology, and biosta-
tistics (e.g., see Vaupel et al. 1979; Cox and Oakes 1984;
Clayton and Cuzick 1985). The use of this method is
justified when one is satisfied with approximating haz-
ards for genotypes by using the values of relative risks
multiplied by the underlying hazard. This model may
also be viewed as a linear approximation of the nonlin-
ear hazard m(x,z), where z characterizes differences be-
tween genotypes. Recent development and applications
of this approach have been discussed by Andersen et al.
(1992). When real hazard rates for genotypes intersect,
the estimates of these hazards, obtained by the RR
method, reflect the “average” results of complicated se-
lection mechanisms, which depend on the behavior of
respective hazard curves. For example, if there is only
one point of intersection—and if it occurs at a very
young or at a very old age—then the proportional haz-
ards calculated by the RR method can still represent the
average effects of selection mechanisms in the popula-
tion. In other cases, important details related to age tra-
jectories of hazards may be missed. For this reason, the
use of several approaches provides a comprehensive
analysis of the gene-frequency data and helps us to better
understand the regularities of gene-environment inter-
action at different stages of the individual aging process.

A simplified version of the PR method, which is mod-
eled on the basis of the minimum LSPR method, has
been used by Toupance et al. (1998) to investigate the
survival of genotypes in the ACE locus. In their article,
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Toupance and colleagues modeled the hazards for three
genotypes by means of Gompertz-Makeham curves.
Note that, instead of the maximum-likelihood method,
Toupance et al. (1998) used the constraint LSPR method
with an ad hoc procedure for taking into account con-
straints. They aggregate the empirical frequencies of can-
didate genotypes in two groups—a group of centenari-
ans and a group of younger individuals—and use them
as the constraints in the method. An additional con-
straint—the risk ratio for respective genotypes, esti-
mated earlier in a separate study—has also been used.

Such an estimation strategy does not allow us to test
the fitness of different models or the similarity of hazards
for genotypes. The aggregation of gene frequencies in
the two age groups produces an inevitable loss of in-
formation, which may bias the parameter estimates. Fur-
thermore, the aggregation reduces the power of the es-
timation procedure and may lead to erroneous
conclusions about the role of genes in mortality and
longevity. We must note, however, that most of these
limitations can be eliminated, and the method is certainly
a step forward from the traditional GF-method ap-
proach to the analysis of gene-frequency data.

The simulation experiments with parametric models
done in our study confirm the importance of measuring
the relative proportions of genotypes in several age
groups of individuals. Such measurements may reveal
that the dynamics of gene frequencies are nonmonotone,
which often results in crossovers of the age-specific haz-
ard rates associated with respective genotypes. Note
that, in the case of the SP method, there is no need to
give a parametric description to survival functions cor-
responding to all genotypes; at least one survival func-
tion can be estimated semiparametrically. This adds
more flexibility to the analysis of genetic data and may
increase the power of the estimation procedure.

The new methods discussed in this article require the
same assumptions concerning initial gene frequencies in
different birth cohorts (assumption i). Although mean-
ingful changes in such frequencies, as a result of evo-
lutionary developments, are unlikely in the time consid-
ered, the contribution of migration flows may be
significant for some populations. When not properly
treated, the presence of such migration may bias the
results of comparison of gene frequencies in a cross-
sectional study. Thus, analysis of historic demographic
data should accompany such genetic studies, to avoid
this potential bias. In particular, the selection of indi-
viduals for the sample should take into account the dem-
ographic history of the families, to eliminate the problem
at the early stage of data collection.

Unfortunately, there is no exact answer to the question
about the best method. All of the new methods discussed
in the present article provide us with more information
about survival of genotypes than does the traditional GP

method. The NP method is the most flexible but requires
a large sample size of the data. The SP method requires
parametric description of one hazard rate, but it is a
good choice when some additional information justi-
fying such a parametric structure is available. The PR
method requires more ancillary information to justify
parametric structure of the respective genotypes. The RR
method is the simplest: it involves only two unknown
parameters, but the assumption of the proportionality
of hazard does not allow investigators to capture the
intersection of the hazard rates for genotypes when such
an intersection exists. The correction for heterogeneity
adds more flexibility to all the methods. The GF, SP, and
PR methods do not allow us to test whether the can-
didate gene is recessive or dominant. However, such test-
ing can easily be done in the version of the RR method
discussed by Yashin et al. (1998).

Note that all of the methods discussed in this article
do not take into account the presence of secular trends
in mortality. Such estimation strategies cannot be reli-
able. Industrial progress, improvements in nutrition and
living conditions, changes in lifestyle, and other trans-
formations in the human environment may have differ-
ent survival effects on individuals with different geno-
types. A more detailed study of the mechanisms of such
gene-environment interactions may require information
about risk factors, indicators of socioeconomic devel-
opment, and cause-specific mortality. For such an anal-
ysis, more-sophisticated models of human mortality and
aging are needed.

The sensitivity analysis performed in this article allows
us to conclude that the major changes in the frequency
of genotypes occur at age180 years (fig. 12), if we as-
sume the proportionality of hazards for genotypes and
if the range of relative risk is 1.1–1.5. This situation
justifies the practice of collecting genetic data from cen-
tenarians and the use of the GF method in the genetic
analysis of longevity. The present analysis also shows
that changes in the initial frequency of a selected ge-
notype with the birth year of the cohort (i.e., as a result
of migration) may seriously disturb the results of anal-
ysis, especially when these changes occur rapidly (fig.
13). Whether the effects of secular trends in mortality
decline in the proportions of genotypes observed in
cross-sectional studies depends on the mechanisms of
gene-environment interaction that determine a given
trend. Since information about such interactions is not
available, we have considered the effects of several hy-
pothetical interaction mechanisms on the age trajectories
of gene frequencies. Our analysis shows that these effects
are small when mortality declines proportionally for all
genotypes (i.e., when relative risk z is constant for all
generations) (fig. 14). The effects may be large when
mortality decline is associated with one genotype (as in
figure 15, in which z changes from 1.5 to 0.95).
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Perhaps the most paradoxical finding from the cen-
tenarian studies is that survival to age >100 years is not
necessarily related to the presence of robust genes (i.e.,
genes that provide the person with a survival advantage
throughout the entire life span), as has been believed
previously. The intersection of hazard rates for geno-
types, observed in centenarian studies, indicates that the
nature of longer survival may be more complicated.
Toupance et al. (1998) have associated such intersection
with “pleiotropic” effects. Such an explanation involves
Williams’s (1957) “antagonistic pleiotropy” theory of
aging. Under this theory, genes that have beneficial ef-
fects on fitness earlier in life may have deleterious effects
at later ages. Since the fitness of a genotype involves not
only survival but also fertility, it is clear that mortality
and fertility should be studied together in models that
are established on the basis of evolutionary principles.
A summary of the current knowledge of evolutionary
theory relevant to the joint analysis of these two im-
portant life-history traits has been presented by Char-
lesworth (1994). The evolutionary consideration allows
us to conclude that intersection of hazard rates for gen-
otypes at late ages (i.e., at age 180 years), observed in
centenarian studies, may have nothing to do with plei-
otropic effects: evolutionary-based intersections must
happen at the ages at which evolutionary pressure on
fitness is still significant (i.e., at the reproductive inter-
val). Thus, the observed effects must have a different
explanation.

One such explanation deals with adaptation of indi-
viduals to environmental impacts. The survival advan-
tage may be either lost or acquired in a continuous strug-
gle with the challenges and stresses of life. Curiously,
during this struggle, genes that induce higher frailty at
the beginning or middle of life may become beneficial
at advanced ages. As a result, the hazard rates for pop-
ulations of individuals carrying different genotypes may
cross over. One may expect that the same stress load
experienced by individuals in a genetically heterogene-
ous population will produce different effects in individ-
uals with different genotypes. It is likely that individuals
with frail genotypes experience higher pressure on their
physiological regulatory systems and homeostatic mech-
anisms for dealing with the consequences of stresses and
environmental insults than do those individuals with ro-
bust genotypes. In the long run, the adaptation mech-
anisms of frail individuals who survive to old age become
better “trained” and, hence, better prepared for the in-
evitable stresses of aging than do those with initially
beneficial genotypes. This gene-environment interaction
may illustrate the fundamental property of a living or-
ganism to develop and maintain the ability to adapt to
changes in the internal or external environment and to
compensate for losses with homeostatic reserves. If such
genetically different adaptation mechanisms are at work,

then the candidate genes have to be searched for among
those genes that produce survival disadvantage earlier
in life. Another reason for the intersection of mortality
curves of genotypes may be associated with hidden het-
erogeneity in mortality (Vaupel et al. 1979; Vaupel and
Yashin 1985). This heterogeneity may depend on other
genes, which are not considered in a centenarian study.

An interesting question concerning the variety of risks
and hazards estimated for different genotypes is: Why
are genotypes with higher regular mortalities not elim-
inated from the population by evolutionary forces?
Fisher’s “fundamental theorem of natural selection”
(Fisher 1930), augmented by the later results of Kimura
(1958) and other population geneticists, may help us to
better understand the causes generating a variety of sur-
vival curves for different genotypes in a population.
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Schächter F, Cohen D, Kirkwood T (1993) Prospects for the
genetics of human longevity. J Hum Genet 91:519–526

Vaupel JW, Manton KG, Stallard E (1979) The impact of het-
erogeneity in individual frailty on the dynamics of mortality.
Demography 16:439–454

Vaupel JW, Yashin AI (1985) Heterogeneity’s ruses: some sur-
prising effects of selection on population dynamics. Am Stat
39:176–185

Weir BS (1996) Genetic data analysis II. Sinauer Associates,
Sunderland, MA

Williams GC (1957) Pleiotropy, natural selection, and the ev-
olution of senescence. Evolution 11:398–411

Yakovlev AY, Tsodikov AD, Anisimov VN (1995) A new model
of aging: specific versions and their application. Biometrical
J 37:435–448

Yashin AI, Vaupel JW, Andreev KF, Tan Q, Iachine IA, Car-
otenuto L, De Benedictis G, et al (1998) Combining genetic
and demographic information in population studies of age-
ing and longevity. J Epidemiol Biostat 3:289–294

Yashin AI, Vaupel JW, Iachine IA (1994) A duality of aging:
the equivalence of mortality models based on radically dif-
ferent concepts. Mech Ageing Dev 74:1–14


