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Abstract

In this paper a model of dependent health lListories appropriate for genetic
analysis of disability and other chronic conditions using cross-sectional survey
data on twins is developed. The model allows us to handle selective drop-outs
by including information on twin pairs with deceased individuals in the analysis.
This information is usually ignored in fraditional genetic analysis of such data.
The approach allows for evaluation of genetic effects on the age at onset of dis-
ability. The properties of the new and the traditional approaches are coinpared.
It is shown that the presence of genetic effects revealed in the traditional analysis
of health status data may have nothing to do with transition to disability state.
The results of a simulation study are discussed. '

1 Introduction

The first wave of the Longitudinal Study of Aging in Danish Twins (LSADT) was
completed in Demmark in 1995 (Christensen et al. [2]). In this study information
on activity of daily living (ADL) for twins who are alive and older than 75 is
collected. Many ADL variables measured in the study describe the individual
as being "healthy” or "disabled” with respect to some functional ability. The
goal of this study is to better understand the relative importance of genetic and
envirommental factors on functional disability and other chronic conditions.
‘Traditional methods of genetic analysis of categorical data are based on lia-
bility models (Neale and Cardon [6]). Analysis of ADL data using using liability
models with age- dependent thresholds indicates the presence of genetic influence
on disability (Yashin et al. [9]). Does it mean that free of disability life span is
heritable? In this paper we show that traditional methods cannot be used to



address this question since they are unable to identify the source of the corre-
lafion in liealth status data. As a consequence, the results of genetic analysis
may be misinterpreted. For example, non-zero heritability estimmates obtained
by fraditional liability analysis of disability may have nothing to do with genetic
influence on the hazard of transition from the "healthy” to the "disabled” state.
Tn addition, traditional methods ignore information on "broken” twin pairs (pairs
with one deceased twin individual) and on pairs where both twins are deceased.
This inforination may be crucial in the identification of the stage of the aging pro-
cess where genetic influence plays a substantial role (e.g. disability or mortality
transition).

To avoid these limitations, we suggest an approach based on the model of
"correlated health histories”. This model extends the idea of correlated frailty
(Yashin and Tachine [8]) used in bivariate (inultivariate) survival to the case of
multistate transitions. The properties of this inodel are investigated. In par-
ticular, it is shown that the same correlation in the cross-sectional health status
data measured in the traditional analysis may be generated either by correlations
in hazards of transition to disability states or by dependence between mortality
rates among individuals in a twin pair. A new parameter estimation procedure is
suggested which allows for evaluation of genetic influence on transition rates. The
procedure is tested on simulated data. The results show that parameters of the
health history model for related individuals can be identified from cross-sectional
ADL-type data. '

2 Methods for Analysis of ADL Data

2.1 Health Histories and Current Status Data

Consider a inodel in which an individual at any time can be in one of the three
states: Healthy, Disabled or Dead, the last one being a terminal state. Define a
lealth history of an individual as a random process {X(#)},., such that:

1, if the individual is Healthy at age ¢

Aty =142, if the individual is Disabled at age ¢ (1)
3, if the individual is Dead at age t

A bivariate health history is used to describe health status trajectories a pair of
related individual (e.g. twins). It can be defined as a bivariate random process
{X1(t), Xo(t)} 4o where X;(t) is the health history of the i* twin, i = 1,2.

Complete observations of {Xa(t), Xo(t)}4~y, may be obtained in a follow-up
study. Health history information collected in a cross-sectional study is avail-
able in the form of current status data (Keiding [4]). For a twin cohort at age t
this data is represented by single observation of the pair (Xy(t), X2(t)) that may
be described by the current status distribution defined by:

Pij(t) = P(Xy1(t) =4, X2(t) = 4), 4,5=1,2,3, 20 (2)



2.2 Liability Models for Current Status Data

Traditional methods of genetic analysis do not provide a way of handling selec-
tive drop-outs caused by non-survival, a limitation in cases where the disability
status is a mortality risk factor. Instead, only health status data on the so-called
"infact” twin pairs (i.e. where both twins are alive at the time of the study) is
included in the analysis, which is focused on the properties of the conditional
distribution:

mii(t) = PN (1) =4, Xa(t) = j| X1 (1) # 3, Xa(f) £ 3) (3)

fori,i=1,2, t>0.

For this purpose liability models are often used (Neale and Cardon [6]). In
the case of twin data a pair of random variables (¥,¥3) ~ BVN(0,0,1,1,5) is
introduced, where ¥; represents the liability of the i twin, i = 1,2. The discrete
trait Xi(t) (conditional on survival of the pair to age t) is assumed to be related to
the hability variable ¥; by means of a threshold 3. When ¥; <y, the i#* individual
is Healthy, otherwise the individual is Disabled. The correlation in liability p is
used as an association measure between the conditional health status variables of
the two twins. An age-specific estimate of the correlation in liability f(¢) may be
obtained from the analysis of current status data on ”intact” pairs. Alternatively,
one might assume a cominon value of p for all ¢ > 0 and use the concept of age-
dependent thresholds (Yashin et al. [9]) to obtain a single estimate .

The magnitudes of genetic and environmental influence on the trait may be
estimated using data on identical (MZ) and fraternal (DZ) twins by comparing
the correlation coefficients in liability parz and jpz estimated for MZ and DZ twins
respectively. In particular, the hypothesis of no genetic influence on disability
Hy : parz = ppz may be tested versus the alternative Hy : purz > ppz.

Based on additive decompositions of liability into additive genetic and envi- -
ronmental components one may define 4? as a percentage of variation in liability
that is associated with the additive genetic component, also called narrow-sense
heritability (Neale and Cardon [6]). An approximate heritability estimate may
be computed as % = 2(paz — finz) if paz < 2ppz. The heritability estimate A2
15 frequently used as a measure of relative nnportance of genetic effects on the
disability trait compared to the environmental effects.

2.3 Conditional Markov Frailty Models

A new approach for the analysis of twin ADL data suggested in this paper is
based on a direct modeling of the bivariate random process {X1(t), Xa(t)} 5y using
dependent transition intensities.

In the following we assume that the debilitating transition Healthy = Disabled
13 not reversible. Let ¥7,Y;,2,, Z; be non-negative random variables. Assume that
given ¥, Z;, i = 1,2 the processes X,(t) and Xi(t) are conditionally Markov and
independent and such that X;(1), i = 1,2 has conditional transition intensities



Figure 1: Bivariate Health Iistory Model.
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that follow a proportional hazards model, i.e.:

YiA(t) is the transition rate Healthy — Disabled
Zipo(t)  is the transition rate Healthy — Dead (4)
rZitg(t) 15 the transition rate Disabled — Dead

for some baseline hazard functions A(f), po(t) where ﬁﬁ] = [ Mu)du and H(t) =
Js ro(n)du are respective baseline cumulative hazard functions and r > 0 is the
conditional relative risk associated with the Disabled state. The multistate model
may be represented graphically as shown in Figure 1.

Here the random variables ¥;,Z; represent the individual susceptibility or
frailty (Vaupel et al. [7]) to debilitation and mortality respectively for ¥ twin,
i = 1,2. The conditional independence assunption is motivated by the following
idea: the dependence between health status variables of two related individ-
uals can only be explained by common genes or shared environmental factors
influencing the health state. Consequently, if the respective genetic or shared
environmental factors are observed the health histories of the related individuals
become independent. A bivariate health history model based on these assunp-
tion which did not include a possibility for the transition Healthy — Dead was
suggested by Iachine et al., [3].

Define the conditional current status probability as:

Ijjl:'trj?': Zi-} = P[:X-l“] :J|Kr31}| 1=1,2, J = 112:'3: t=0 [:'5:]

Assuming that Pi(0]Y;, Z;) = 1 (i.e. all individuals are Healthy at age t = 0) the
expressions for P;(t|¥;, Z;) can be obtained by solving the system of Kolmogorov



equations associated with the conditional Markov process X;(t). The solution is:

[ Py(t|V;, Z;) = e~ ViMO-Zini(h)
t
| ez = fc_j.m{”]_z‘{‘rf{"}i’f'{-’f{f}—m,’nJ}]}'il[u}u’.u (6)
1]

L P‘;[t[}:, Et} =1- -Pl['r'“';- EJ} = p&[”ﬂ. 3,]

Using the conditional independence assumption the probabilities F;(t) can be
calculated as:

Bij(t) = B[R, 21)P5(t]Y2, 22)], 1./ =1,2,3, t 20 (7)

Using (6) the marginal current status probabilities (7) can be expressed in terms
of the joint Laplace transforin of ¥, V5, Z1, Z, and its derivatives (Aalen [1]).

Questions aboutf genetic influence on the frailty variables may be addressed
by analyzing the 4 x 4 covariance matrices of ¥;,%, 21, Z» for MZ and DZ twins
by means of a Cholesky deconposition (Neale and Cardon [6]). When (¥3,Y2)
and (2, 2;) are independent and Var(¥;) = ay, Corr(Y,Ya) = py, Var(Z) = Ths
Corr(Z1, Z2) = py, i = 1,2 the genetic analysis can be carried out by a more siinple
approach siinilar to the analysis of correlations in liability described above.

We assuine a corvelated gamma-frailty model (Yashin and Iachine [8]) for
(¥1,¥2) and (Z,, Z;) with respective variances and correlation coefficients. The
bivariate Laplace transtorm for this model is given by:

Ler(si,s2i0,0) = (1 4+ a%(sy +.'5-_;]|]|";f:I (1 +r;251]'1_3 (1 +ﬂ332)—]?-1£ (8)

where o2 is the variance and p is the correlation coefficient of the bivariate frailty
distribution. A Gompertz model is asswmed for the baseline hazard functions:
At) = haltiay, by) and py(t) = hglt; ay, b ) where hg(t;a,b) = ae" and ay, by, a,, b, > 0
are paraneters.

2.4 Dependent Hazards Explain Correlation in Liability

The multistate model of debilitation and mortality allows for two potential
sources of genetic influence on the health status: the genetic influence on the
debilitation process (transitions from Healthy to Disabled) and the genetic influ-
ence on the mortality process (transitions from Healthy and Disabled to Dead).
Consequently, using this model for data analysis results in two heritability esti-
mates. One is associated with the hazard to become disabled, another deals with
the hazard of death conditional on being in a particular disability state. The
traditional liability-based approach provides only one heritability estimate, i.e.
the estimate of heritability in liability for the health status variable. It is there-
fore important to understand how this estimate is related to the two estimates
of heritability in frailty obtained from the multistate model.

For this purpose we have calculated the correlations in liability that would be
estimated by a traditional approach applied to the health status data produced



by the multistate model. Graphs of these correlations in liability as functions of
age for MZ and DZ twins are presented in Figure 2 along with the correlation
coefficients of the respective frailty distributions for MZ and D7 twins that were
used to produce the graphs.

Two multistate models were used in the analysis: one model (Figure 2 (above))
illustrates the situation where genetic influence is only present in the frailty
variable associated with the debilitation process (the respective correlations of
frailty (py) for MZ and DZ twins are 1.0 and 0.5) and there is no genetic variation
in the frailty variable related to the mortality process (the correlations in frailty
are zero for both MZ and DZ twins). Figure 2 (below) depicts the opposite
situation: there is no genetic influence on the debilitation process (the respective
frailties for MZ and DZ twins are uncorrelated), but there are considerable genetic
effects on the mortality process (the respective correlations in frailties (p,) are
1.0 and 0.5 for MZ and DZ twins). Other parameters of the mode! where chosen
as follows: oy =0, =1, ay = 1075, a, =3 x107% by = b, =0.1 and r = 20.

One can see that these two radically different models with respect to the
nature and source of the genetic influence on the lLealth status trait produce
virtually identical age-trajectories of correlations in liability. In both cases the
heritability estimates in liability will be increasing functions of age since the dif-
ference between pyz and ppz increases with age. The increase of heritability
estimates with age may be mistakenly interpreted as an increase of genetic influ-
ence on the age at onset of disability with age, even in the absence of any genetic
influence on transition from "healthy” to "disabled” state. We can therefore con-
clude that the traditional liability-based approach to genetic analysis of health
status data has a severe limitation: it cannot identify the source of correlation
in liability and hence, it cannot provide a reliable evaluation of the roles of genes
and environment in disability and other chronic conditions.

This result is not surprising: the traditional liability method excludes impor-
tant health state information on twin pairs where one of the twins is deceased
(the so-called "broken” pairs) from the analysis. The multistate model presented
in this paper explicitly inodels the process of mortality and therefore allows " bro-
ken” pairs to be analyzed. Moreover, information about twin pairs where both
individuals are deceased at the time of the study can also be used in the anal-
ysis. This information can be obtained from the Danish Twin Register (Kyvik
et al. [5]). Thus, the multistate model allows us to integrate health status data
obtained during cross-sectional studies with survival data from the Danish Twin
Register.

2.5 Simulation Study

To verify the identifiability of model parameters in the multistate model from
twin health status data, a simulation study was performed. For this purpose
health status data were simulated using the multistate health-history model for
related individuals. For each age between 75 and 100 two samples of data were



Table 1: Sitmulation Results

N | oy | Oy ] orz__: Nz :n.)\xl_f]""_ by, frﬁxl{]:" Dy r
True | 1.00 0.50 1.00 0.50 1.00 0.10 1.00 0.10 2.00

100 | 1.08 | 055 | 0.99 | 050 1.30 0.11 | 262 | 010 | 3.88 |
(0.48) | (0.31) | (0.24) | (0.19) | (1.37) | (0.03) | (4.91) | (0.02) (7.21) |
1000 | 1.00 | 053 | 1.00 | 051 1.03 [ 010 [ 1.02 (7010 | 2.00

| (0.14) [ (0.13) | (0.09) | (0.06) | (0.44) | (0.01) | (0.40) | (0.01) | (0.03) |

generated by single year age groups. The size of the first sample is 100 twin pairs
for each age. The second sample contains information about 1000 twin pairs
for each age. The simulation procedure was repeated to obtain a series of 100
simulations each consisting of the two samples described above.

Maximumn likelihood estimation procedure was used to obtain the estimates
of the parameters for each sanple. The expression for the likelihood function
was derived using (7) and (8). The integrals resulting from (G) were evaluated
munerically in each step of the maximization procedure. The resulis are pre-
sented in Table 1. The first row displays the true parameter values used in the
simulation. The following rows show the empirical average and standard devi-
ation (in parentheses) of the respective parameter estimates calculated from a
series of 100 simulations for the two samples (N = 100 and ¥ = 1000). The results
indicate that estimates of the parameters are close to the true parameter values,
However, the variances of the parameter estimates in the case of 100 observations
per age are high, especially for the relative risk parameter r.

3 Discussion

Methods of genetic analysis of discrete traits based on liability models are a
standard tool of genetic analysis of health status data. An appealing feature
of these methods is their simplicity. Available statistical packages permit the
estimation of the respective parammeters of liability using current status data on
twins. '

The simplicity of these methods is also their weakness. Liability models are
static — they describe the health state distribution at one fixed point of time.
No mechanisin is present in the model to provide a stochastic description for the
evolution of the health state of a single individual. As a result, no conclusions
about the future health trajectory of one twin individual can be made when the
health history of his/her co-twin is known and the parameters of the liability -
model are estimated. For the same reason traditional liability methods cannot
handle twin pairs with one deceased individual, since such pairs occur when a
transition fromn "disabled” to "dead” state occurs and such transitions cannot be
described by a traditional liability model. That is why "broken” twin pairs are



excluded from the analysis. For each discrete trait (i.e. health state) oue liability
variable is used. As a result only one heritability estimate for the liability variable
can be obtained, even if our background knowledge about the aging process
suggests two possible sources of genctic influence: the debilitation and mortality
processes. No conclusions about the source of genetic influence can be made
from one heritability estimate — the liability model for health status data tells
us virtually nothing about the nature of the aging process.

In other words, traditional liability models are too simplified to provide a
reliable tool for studying the processes that occur in an aging individual — the
processes of transitions between the health states. To learn more about aging one
must use a model that characterizes this process and provides means to estimate
model parameters from health status data. The multistate model developed in
this paper fulfills these criteria. It provides a convenient framework of a health
trajectory by explicitly modelling the transitions between the health states. This
framework allows us to use all available information on twins (including those who
are deceased) and identify the source of genetic influence on the aging process.

The multistate model provides a way to extend the analysis of health status
data using the information from the second wave of the Longitudinal Study
of Aging in Danish Twins. This data will provide multiple observations of a
health history for each individual and in this way allow us to obtain more precise
estimates of the parameters. Liability models provide no mnethod for dealing with
repeated measurements, since they do not describe health changes over time.

The multistate health history models are more complicated than the tradi-
tional liability models. Consequently, more sophisticated estimation procedures
have to be used to yield the estimates of the parameters. Additional difficulty is
related to the estimation of the unknown underlying hazards A(t) and j(2). Semi-
parametric estimation procedures need to be developed to provide estimates of
these functions without the need to use an explicit parametric forin for the two
hazard functions. Such methods require collection of larger data samples than
the traditional liability methods. Additional simulation studies are required to
perforin a comparison of the statistical power of the two methods.

A technical asswnption that we have used in this model is the conditional
Markov property. This property implies that given the frailty variables the risk
of making a fransition from one state to another depends on the individual’s age
and current state (i.e. it does not depend on the previous transition history).
Other models may exploit the conditional semi-Markov property, where the risk
of transition may in addition depend on the time spent in the current state.
Whether one or another property holds for the health history data is an important
question. Its solution can contribute to better understanding of the nature of the
aging process.



4 Conclusion

This paper shows that genetic influence revealed in disability data by traditional
liability analysis may have nothing to do with the heritability of the age of onset
of disability. It can be induced by dependence between mortality rates con-
ditional on disability status. A more sophisticated model of dependent health
histories suggested in this paper may be used to identify the source of correlation
in liability.
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