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1. Population Heterogeneity

All populations are heterogeneous. In demographic analyses, two dimensions of
individual differences—age and sex—generally are observed. Many other characteristics
may be observed, including date and place of birth, urban vs. rural residence, marital
status, nationality, religious affiliation, number of children, number of siblings, age of
mother and father at an individual’s birth, household structure, socio-economic status,
educational achievement, occupation, spouse’s occupation, smoking behavior, diet,
height, environmental quality at current residence, health status, cognitive and physical
functioning, genotype, etc. In even the most thorough study, however, most attributes of
individuals are not measured. Indeed, most studies focus on only a handful or two of the
multitudinous dimensions of differences that distinguish one individual from another.

Observed heterogeneity creates various analytical opportunities for demographers.
Multiple regression analysis, logit and probit analysis, survival analysis, and other
statistical methods have been developed to estimate the impact of observed covariates.
These methods are treated in standard textbooks and will not be reviewed here.

Unobserved heterogeneity creates analytical problems rather than analytical
opportunities: unobserved heterogeneity is a nuisance, a headache, a béte noire.
Unobserved heterogeneity creates difficulties for demographers because demographers
study how population characteristics change over age and time and place—and

unobserved heterogeneity distorts observed patterns of change.



2. Compositional Change

The root of the problem is that the members of population cohorts gradually die
off or drop out. Animals and plants die, machines break down, bachelors marry, the
married divorce, the childless give birth, those with one child have a second, children
leave parental homes, students complete their education, the unemployed find jobs, the
well get sick and the ill recover. Much of demographic analysis focuses on the transition
rates associated with such changes. In many instances, demographers are interested in
how transition rates vary with age: they study, for instance, age-specific death rates and
marriage rates. In other cases, duration matters, as in studies of recovery rates from an
iliness or divorce rates as a function of the duration of a marriage. In analyses of first,
second, and subsequent births, birth rates by parity and time since last birth are of interest.

Hence, much of demographic analysis concerns the estimation and comparison of
drop-out rates in cohorts that are changing because their members are dropping out. The
problem is that those who drop out probably have a greater tendency to drop out than
those who do not. People who die at some age tend to be frailer or more susceptible or at
higher risk than those who survive to an older age. Couples who conceive after a month
or two of trying may be more fecund than those who first conceive after many months.
Marriages that quickly end in divorce may have been shaky marriages from the start. To
put this another way, the composition or structure of a heterogeneous cohort changes as
the cohort dies off. The frail or susceptible tend to die first, leaving a more robust

surviving cohort.

3. Three Levels of Explanation

Age or duration-specific changes in birth, marriage, death, and other transition
rates can be interpreted in three alternative ways that might be called level-0, level-1, and
level-2 explanations. A level-0 explanation is that the data are erroneous. A level-1
explanation is that the observed change is produced by a corresponding change at the
individual level. A level-2 explanation is that the observed change is an artifact of a
change in the structure of the population, i.e., a change in the composition of a

heterogeneous cohort.



Consider the report that the increase in mortality with age slows at the oldest ages
(Vaupel et al. 1998; Thatcher, Kannisto, Vaupel 1998). A direct, level-1 explanation
would be that for individuals at advanced ages the probability of death increases relatively
gradually with age. A level-0 explanation (bad data) would be that death rates at
advanced ages are distorted by age-misreporting problems and that the apparent
deceleration of mortality is a consequence of age exaggeration. Finally, a level-2
explanation would be that the leveling off of death rates after age 100 might be “caused
by decreases in the average frailty of a population cohort at later ages as frailer members
are removed by mortality” (Vaupel, Manton, and Stallard 1979).

Observed patterns of mortality deceleration in different populations are almost
certainly due to a mix of these three levels of explanation, with the importance of the
different explanations differing from population to population. In almost all populations
there are problems with age-misreporting at advanced ages and in many populations such
misreporting is very severe (Jeune and Vaupel 1999). All populations are heterogeneous,
so level-2 explanations must have some validity, although it is currently unclear how
much of the deceleration can be explained by compositional change. The level-1
explanation that individuals age more slowly at advanced ages may be partially right—or
completely wrong. There is some suggestive evidence that for individuals the chance of
death actually rises faster than exponentially at advanced ages, even though population
death rates are increasing slower than exponentially (Yashin and Iachine 1997).

At least since Edmund Halley (1693), demographers have recognized the
importance of level-0 and level-2 explanations as alternatives to direct level-1
explanations. All careful demographers are aware of the prevalence of bad data and all
well-trained demographers know that demographic rates can differ because of differences
in population composition. Nonetheless, level-1 explanations—that what is observed on
the population level also holds on the individual level—seem so natural that even careful
demographers often find themselves naively and uncritically slipping into direct

interpretations of population changes and differences (Vaupel and Carey 1993).



4. Frailty Models

Demographers try to distinguish between type-1 and type-2 explanations by using
frailty models (Vaupel, Manton, Stallard 1979) and the statistical methods of survival
analysis (Cox and Oakes 1984). In this approach the trajectory a cohort’s rate of death or
exit is usually captured by either the survival function s(x) or the hazard function u(x).
Demographers call this hazard function the force of mortality when they are studying
death rates and in some contexts the term intensity is used instead of hazard. The

survival function and the hazard function are inter-related by the following two formulas:

_ ds(x) / dx
H(x) = ““'—*“S{I] (1a)
and
S C (1b)

In the simplest case there is no information about the characteristics of the individuals in
the cohort except age (and whatever characteristics describe the cohort as a whole, such
as “males born in France in 1948™).

Because all populations are heterogeneous, it makes sense to model the
population as a mix of homogeneous sub-populations (which might each consist of a
single individual). Let s(x,z) be the survival function for the sub-population with
“frailty” z , where frailty in this context simply refers to the susceptibility or liability of
the sub-population to the hazard. In general, frailty models are designed such that the
greater an individual's frailty, the greater the individual’s susceptibility or liability to the
hazard of interest.

Let 5(x) be the survival function for the population as a whole, such that

5 = [s(x.2)8(2)de (2a)
in the continuous case, where g(z) is the probability distribution of z at age zero and

5(x)= 2, m(2)s(x,2) (2b)

in the discrete case, where 7z(z) is the proportion of the cohort in sub-population z at age

zero. This general frailty model can be more specifically formulated in several ways.



a) Relative-Risk Models
One specification is the proportional-hazards or relative-risk model

M(x,z) = zu(x), (3a)
or, equivalently,

s(x,z) = s(x)*, (3b)
which was suggested by Vaupel, Manton, and Stallard (1979). In this model, u(x) is the
baseline, standard, underlying hazard for individuals of frailty one and s(x) is the
corresponding survival function. Vaupel, Manton, and Stallard (1979) show that

H(x) = Z(x)u(x), )
where Z(x)is the average frailty of those alive at age x. Because z is fixed and does not
vary with age, Z(x) declines with age as the frail drop out of the cohort. Hence, #(x)
increases more slowly than u(x) does. Indeed, z(x) can be declining even though u(x)
is rising.

For this model z is often taken to be gamma distributed with mean 1 and variance

o’ , because this gamma distribution leads to convenient mathematical relationships. In

particular, for gamma-distributed frailty
2(x) = (1+ 07 [ p(n)dn)™ =5(x)7, )
where §(x) is the survival function for the population as a whole. It follows from (5)
that
5(x) =(1-0%Ins(x))™ . (6)

As a specific example of this kind of gamma-frailty relative-risk model, suppose

that mortality on the individual level follows a Gompertz trajectory:

H(x) = ae™. ™
Then it follows from (4) and (5) that the population trajectory of mortality will follow the
logistic pattern



b
ae™

H(x) = 2 : (8)

1+“: (e - 1)

leveling off at a value of b/ o,

b) Accelerated-Aging Models

Another specification is the accelerated-aging model
p(x,2) = p(x2), 9)
which is analogous to the accelerated-failure model used in reliability engineering. In the
special case where u(x) follows the Weibull trajectory
p(x) = ax”, (10)
where a and b are parameters, this model is equivalent to the relative-risk model, because
a(zx)’ = ’ax® = 2’ p(x). (11)
In the special case where u(x) follows the Gompertz trajectory, given in formula
(7), the accelerated-aging model is of the form ae®™ whereas the relative-risk model is of

the form zae®. Small changes in the slope parameter b can have larger effects on
mortality at older ages than big changes in the level parameter a. Hence, much less
heterogeneity is needed in an accelerated-aging Gompertz model than in a relative-risk

Gomperz model to produce substantial differences between u(x) and fi(x) at older ages.

This is illustrated in Figure 1.



FIGURE 1: The accelerated-aging model can produce greater mortality deceleration with

less heterogeneity than the relative-risk model. Baseline Gompertz hazard with a=.0001
and b=.1 (thin line) compared with population hazard in relative-risk model with o*=.25

(thick line) and in accelerated-aging model with ¢ =05 (dashed line). Note that hazards

are shown on a log scale.

1.0000 4

0.1000 +

0.0100 1

Hazard

G.0010 +

0.0001

1] 10 20 30 40 50 60 70 &0 g0 100

¢) Discrete Frailty Models
The discrete frailty model is also a useful specification of the general frailty
approach, as discussed by Vaupel and Yashin (1985). In this case,
H(x,2) = 1,(). (13)
That is, z is now an index for the different subpopulations, each of which has a hazard

function. Let 7, be the proportion of the population in subpopulation z at age zero.

Then
5(x) = Y, 7,5,(x) (14)

and



A(x)= 2,75 (N4, (x) ] D, 7.5, (x). (15)

If it is assumed that z is a relative-risk factor, then u_(x) = zu(x) and s (x) = s(x)*.
Heckman and Singer (1984) suggested that this specification be used to control for the
effects of hidden heterogeneity when fitting models to data. More generally, however,

4. (x) can take on a different functional form for each value of z.

A simple example of discrete frailty models is the mover-stayer model (Blumen et
al. 1955) in which one group in the population is susceptible to emigration, marriage,
divorce, or some disease and the other group is immune. Let 7 be the proportion of the
population that is susceptible. Then it follows from (15) that

Ti(x) = As(x)u(x) | (7(x) + 1= 7). (16)
Even if u(x)steadily increases, f(x) will eventually decline as s(x) approaches zero. An

illustrative example is provided in Figure 2.

Divorce rates in some countries and periods follow the kind of rising-falling
pattern shown in Figure 2. Does this imply that marriages are shakiest after a few years of
marriage? Not necessarily, as the Figure illustrates. The same general effect could be
produced if the second group were not immune but simply at low risk. Indeed the rising-
falling pattern could be produced if the hazard steadily increases for the high-risk group
but steadily decreases for the low-risk group. For one group marriages strengthen with
duration, while for the other, marriages weaken—despite the appearance of the curve for

the entire cohort, there is no divorce hump.



FIGURE 2: The population hazard may increase and then decline if the hazard rate for
one group is increasing and the other group is immune. The population hazard is shown
by the thick line. The hazard for the susceptible group, shown by the thin line, is

#(x) =0Lx. It was assumed that 95% of the population is susceptible.
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d) Changing Frailty Models

As George Box asserted, all models are wrong, but some models of useful (Box
15%‘ It is often useful to define an individual’s frailty as fixed, at least after some age,
and to classify individuals into groups depending on their frailty at that age.
Alternatively, it may sometimes be useful to develop models in which an individual's
frailty can change with time or age.

In one simple model of this kind, all individuals start out with frailty one. They
suffer a hazard of death of 4, (x) at age x. They also are subject to the hazard A(x) that

their frailty will change from one to two, in which case their hazard of death changes to

M, (x). The second state might be associated with some morbid event, such as having a

heart attack or losing the ability to walk. Alternatively, the hazard of “death” could be the



hazard of divorce and the event could be having a baby. Let s,(x) denote the proportion
of the cohort that is alive with frailty one at age x and let s, (x)similarly denote the

proportion of the cohort that is alive with frailty two at age x. In the simplest case when

the three hazards functions are constant, it is not difficult to show that

5,(x) = "t (17a)
and
— A —#iT —L+d)x
5(x) —m(e -e ). (17b)

The population hazard is given by

o A g — 1)ty + A)
H(x)=—% et mtA-m)s _I'_(‘”l_#z) '

(18)

At age zero, H(0) = 4, and as x approaches infinity, Z(x) = u, if @, & + A and
H(x) =, + A otherwise.

Le Bras (1976) and Gavrilov and Gavrilova (1991) proposed generalizations of
this model. Instead of two states of frailty, suppose that frailty z can equal any non-
negative integer. Initially everyone has frailty zero. People with frailty z face a hazard of
death of u, +zu, as well as a hazard of A, + zA4 that their frailty will change to z+1.
Although u,, u, A, and A are constants and do not vary with age or time, the
population hazard fi(x)follows a logistic trajectory. Yashin, Vaupel, and [achine (1994)
show that this trajectory is identical to the trajectory obtained if frailty is fixed and
gamma distributed and the baseline hazard is of the Gomperiz form x(x) = ae®, with
H(x,2) = zu(x) + ¢, where c is the constant Makeham term. Without ancillary
information it is impossible to tell whether frailty is fixed or frailty is changing.

Instead of only taking on discrete values, frailty can be modeled to vary
continuously. Vaupel, Yashin, and Manton (1988), for instance, develop a changing-
frailty model based on a stochastic differential equation. They apply the model to clarify
the interaction of debilitation, recuperation, selection, and aging. The model yields
various insights about lingering mortality consequences of disasters such as wars,

famines, and epidemics that may weaken the survivors. A key result is that debilitation

10



and selection are interdependent: debilitation that increases population heterogeneity will
result in subsequent mortality selection; selection, by altering the distribution of frailty,
will influence the impact of debilitating events. The basic equation of the model is
H(x,2) =, (x) + 2(x)” (x), (19)
where u,(x)is the baseline hazard, u’(x) determines the additional hazard, and z(x) is
the frailty of the individual at age x as given by
2(x)=Y*(x), (20)
where ¥(0) is normally distributed and
d¥(x) = [a,(x)+ (a,(x) — a, (x))Y (x))dx + b(x)dW (x), (21)
where W is a Wiener process with W(0) =0. The functions a, and a, represent the
effects of debilitation whereas a, represents homeostatic healing and recuperation; the

function b determines the importance of the Wiener-process term.

e) Correlated-Frailty Models

Because of shared genes and a shared childhood environment, two twins may
have similar frailties. More generally, relatives or people who live in the same
environment may have similar frailties. As discussed by Vaupel (1991a and b), shared-
frailty models can be used to analyze such situations, but a more appropriate and
powerful approach involves the correlated-frailty models developed by Yashin and
colleagues and explained in Yashin, Vaupel, and Iachine (1995) and Yashin and Iachine
(1997).

A simple variant of this kind of model involves pairs of twins, with one twin
having fixed frailty z, and the other twin having fixed frailty z, and with the hazard of
mortality given by u(x,z,) = zu, (x), i =1,2. The correlation between the two frailties is
modeled as follows. Let

Z=y,+y (22a)
and let

L=y, vV, (22b)

11



where the y,, i =0,1,2, are three independent random variables that are gamma
distributed with the same scale parameter. The gamma distributions of y, and y, have
the same shape parameter, but this parameter may differ for y,. The frailties z, and z,
are constrained to have a mean of one and they have the same variance ¢°. The values of
o? and p, the correlation coefficient between the two frailties, are simple functions of

the scale and shape parameters.
As shown by Yashin, Vaupel and Jachine (1995), the bivariate survival function
for the population of twins is given by
5(x,,%,) = 5(x,) P5(x;) P (5(x,)7 +5(x5,) 1), (23)
Because the survival of adult twins is very similar to the survival of adult singletons, in

studies of adult mortality the function 5(x)can be taken from demographic life tables for

the general population. In this case the bivariate survival function depends only on o’
and 0 ; no assumptions have to be made about the shape of a baseline hazard function.
Using (23) values of o and o can be estimated using the kind of maximum-likelihood
estimation described below. Then the baseline survival function can be calculated by
rearranging (6) as follows:

s(x) =exp((1-5(x)"" )/ 0%) (24)
and u(x) can be calculated from (1). Applying this model to survival data on Danish
twins born between 1870 and 1900, Yashin and Iachine (1997) found that the baseline
hazard of mortality increases faster than exponentially after age 30 even though the
population hazard of mortality decelerates at advanced ages. That is, it is possible that
the observed leveling off of mortality may be entirely accounted for by a level-2
explanation (compositional change due to mortality selection) and the actual trajectory of

mortality for individuals may rise more rapidly than a Gompertz curve.
5. Empirical Data

The survival or duration data used in fitting frailty models is often of the

following form. There are n individuals in some cohort, with observed ages at

12



death X,,i =1,...,n. More generally, X, stands for age at some event, such as marriage,

or some duration, such as time from marriage to divorce. For simplicity, we will refer

to X, as age at death.

Age at death may not be known for all individuals: it may only be known that the
individual survived at least until some age. These are called right-censored observations.
They can arise if some individuals never “die” (e.g., some women never give birth, some
people never marry, some married people never divorce). They can also arise if some
individuals are still alive at the end of a study or if some individuals drop out of the study
and are lost to follow-up.

It may also be the case that it is only known that individual i died between age x,
and age x,. And it may be the case that an individual is not followed from age zero but
from some age x,, so that the individual is only at risk of dying after age x,. These are

called left-censored or left-truncated observations.

Various covariates may be observed: we will letw, denote the value of the jth

covariate for individual i .

6. Methods of Parameter Estimation

Various methods may be used to fit frailty models to empirical survival or
duration data. In an important article on “deceleration in the age pattern of mortality at
older ages”, Horiuchi and Wilmoth (1998) estimate the parameters of a Gompertz-
Makeham model with period effects and unobserved frailty by a weighted-least-squares
procedure. They carefully document the method they use, so their article is of
pedagogical value as well as being of substantive interest.

It is more common, however, to use maximum-likelihood methods in analyses of
survival or duration data in general and in fitting frailty models in particular. For
discussion of this approach, a textbook such as that by Cox and Oakes (1994) is
recommended. Here we merely adumbrate a few points of particular relevance to the

estimation of parameters of frailty models.
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The likelihood of an observation X, can be thought of as the probability of

observing this value given a particular model with specific parameter values. More
generally, the likelihood can be proportional to the probability instead of being equal to
the probability, because any parameter values that maximize the probability of the data
will also maximize any quantity that is proportional to the probability. Let s,(x) be the
probability of surviving from age zero to age x , for some individual with a vector of

covariates w; and with some unobserved frailty z. Then if age at death X, is observed
and if the individual is followed from age zero, the likelihood of the observed age at
death is 4 (X,)s,(X,). If it is only known that the individual survived at least to age X,
then the likelihood of this observation is s,(X,). If it is known that the individual died
between ages Xh. and X, , then the likelihood of this datum is s(X ) - s(X,,). If the

individual is first observed at age X, and then dies at age X, , then the likelihood is

H(X,)s(X,) ] 5(X,,).

It is customary in survival analysis to make calculations in terms of the logarithm
of the likelihood, the log-likelihood, because the likelihood of a data set is often
e.xtremel}r small. Let L(X,) denote the log-likelihood of the observation. The log-

likelihood of the entire data set is given by the sum of all the L(X,)’s. The maximum-

likelihood estimate of the parameter values in a model is the estimate that maximizes the
likelihood or, equivalently, the log-likelihood of the data.

The effect of observed covariates on survival can be modeled in many ways.
Because our focus here is on hidden heterogeneity and not on general methods of survival
analysis, we restrict our attention to the simple case where the covariates are fixed (rather
than changing over time). Furthermore, we will assume that the impact of the covariates
on an individual’s hazard is given by W4, (x,z), where W, is the net relative-risk imposed

by the vector of observed covariates. Often in survival analyses, W, is modeled by

E"':“‘.r

W, =e’ , wherethe b,’s are coefficients that are estimated.

14



For ease and conciseness of exposition we will consider only the relative-risk
frailty model with gamma-distributed frailty. For the relative-risk model (cf. formula
(3b)),

5, (x) = s(x)™*, (25)
where s(x) is the baseline or standard survival function for individuals of frailty 1 and
with an estimated relative-risk W, of 1. In the special case of gamma-distributed frailty, it
follows from formula (6) that

5(x) = (1- W, Ins(x)) ™", (26)
where 5 (x) is the probability that an individual with estimated relative-risk W, will
survive to age x and where ¢ is the variance of frailty. The bar over the s indicates that
§; s an average: unobserved frailty z is removed from the formula by taking the
expected value of s with respect to z. The corresponding value of 1 (x) can be

calculated by formula (1) and the log-likelihood L(x) can then be calculated as indicated
above.

A remaining issue is how to estimate the baseline survival function s(x). There
are two approaches to this. First, a parametric form can be assumed. For instance, it
might be assumed that s(x) (and u(x)) are of the Gompertz or Weibull form. Manton,
Stallard, and Vaupel (19@ provide an example of this kind of analysis.

Alternatively, s(x)can be estimated nonparametrically. That is, values of s(x)can
be estimated for a sequence of ages over some age range without imposing any
assumptions on the shape of the trajectory of s(x). Several different methods of
nonparametric estimation have recently been proposed and research in this area is rapidly
developing. Here we sketch one method, to illustrate the general idea of nonparametric
estimation.

Suppose that the survival data that are available for analysis are based on a large
random survey of some population. Further suppose that survival in the population is

known, perhaps from vital-statistics data. Let 5(x) be the survival curve for the
population. As above, let 5 (x) be the survival function for the individual { in the

survey. For a large random survey, the following equation might approximately hold:

15



F(x) = 2 5,(x) I n. 27

If 50, then the following method could be used. For the relative-risk gamma-frailty

specification, formula (26) can be substituted in (27), yielding

F()= (1= W Ins(x) ™" /In. (28)

For any specific set of estimated values for W, and o, one and only one value of s(x)

will satisfy this equation. Hence, o and the coefficients that determine W, can be

determined by maximum-likelihood estimation under the constraint that (28) holds.

The theoretical and practical properties of this algorithm still need to be
investigated. Many other estimation procedures that do not require parametric estimation
of s(x) are being developed and various imputation methods, EM algorithms, and other
concepts might be used (see, e.g., Andersen, Borgan, Gill, and Keiding 1998). The
statistical estimation of frailty models is currently a hot topic of statistical research and
the coming decade is likely to produce major advances in the development of powerful,

practicable procedures.

8. Conclusion

The frailty models and parameter-estimation methods sketched above are not yet
available as part of easy-to-use computer software packages. Several software packages,
however, include convenient options for fitting other kinds of models to survival and
duration data. In particular, Cox (partial likelihood) regression can be readily applied to
empirical observations. Why bother with frailty models when Cox regression can be used
to estimate the coefficients of covariates in hazards models? There are three main
reasons.

First, Cox regression yields coefficient estimates that tend to be biased toward
zero. As epidemiologists have often observed, most risk factors that raise the chance of
death appear to become less important with age or duration. The reason generally is that
high-risk individuals who survive often ha\rt:.unﬂbserved strengths or advantages,

whereas many of the apparently low-risk individuals who survive may be relatively weak
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or unhealthy along unobserved dimensions. Consequently, at older ages or longer
durations, the high-risk group differs in composition from the low-risk group: the high-
risk group has lower unobserved frailty. If unobserved frailty is not included in the
model, then this effect will result in a convergence with age of the hazard functions for
the two groups, as discussed by Vaupel, Manton and Stallard (1979) and Vaupel and
Yashin (1985). The proportional-hazards assumption used in Cox regression does not
allow for such convergence: the estimated relative risk is a measure of the average
relative risk over the entire age range. The implication of this is that Cox regression
tends to result in under-estimates of risk factors: the estimates are biased toward zero.
More generally, any method that ignores hidden heterogeneity will tend to under-estimate
risk factors at older ages or longer durations.

Second, frailty models permit estimation of underlying (or baseline) hazards, i.e.,
the hazards that govern the trajectory of risks at the individual level. It may be of interest,
for instance, to know whether or not the underlying hazard is monotonically increasing
even though the observed population hazard first rises and then declines. More generally,
demographers are concerned about whether observed trajectories of demographic rates
over age or duration can be explained by level-1 accounts or level-2 accounts. Does the
trajectory observed for a population also hold for the individuals who comprise the
population—or is the trajectory attributable to compositional change? Frailty models are
designed to address this question.

Third, frailty models permit the use of ancillary vital-statistics data in the analysis.
For example, as briefly discussed above, it is possible to analyze detailed data on some
subset of a population (e.g., twins or those who participate in a survey) together with the
vital-statistics data on the survival of the general population. The combination of detailed
data on a sub-population with survival data on the entire population leads to more
accurate statistical estimates. This combination seems natural and highly appropriate for

demographers.
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