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In population studies of aging, the data on genetic markers are often collected for individuals from different age
groups. The idea of such studies is to identify “longevity” or “frailty” genes by comparing the frequencies of
genotypes in the oldest and in the younger groups of individuals. In this paper we discuss a new approach to the
analysis of such data. This approach, based on the maximum likelihood method, combines data on genetic mark-
ers with survival information obtained from standard demographic life tables. This method allows us to evaluate
survival characteristics for individuals carrying respective candidate genes. It can also be used in the estimation
of the effects of allele–area and allele–allele interaction, either in the presence or absence of hidden heterogeneity.
We apply this method to the analysis of Italian data on genetic markers for five autosomal loci and mitochondrial
genomes. Then we discuss basic assumptions used in this analysis and directions of further research.

 

N genetic studies of human aging and survival, the gene
frequency (GF) method is often used (1,2). In this

method, the contribution of candidate genes in the survival
process is analyzed by comparing gene frequencies in two
different age groups of individuals. According to strategies
used currently to identify genes in multifactorial traits (3), al-
lele pools are compared between sample groups of extremely
old individuals (cases) and younger people (controls) from
the same population. The observed case–control differences
in allele frequencies are associated with the influence of a
respective candidate gene on survival (4–12). To make
proper classification on alleles as “frail,” “robust,” and “neu-
tral,” standard statistical methods, which identify differences
in observed frequencies among case and control groups for
different candidate alleles, are used. These methods, how-
ever, do not allow us to evaluate survival characteristics of
individuals carrying candidate alleles. Because several al-
leles for a candidate locus are usually involved in an analysis,
multiple comparisons based on the Bonferroni inequality,
Scheffé’s method, and others have often been used (13).
The expediency of this procedure was, however, questioned
by Rothman (14). Indeed, when carefully chosen hypothe-
ses about specific alleles are tested, it does not seem reason-
able to insist that each be adjusted for the mere presence of
the other. However, when the presence of the effect in a se-
lected locus is checked by a large number of tests, then cor-
rection for multiple comparison might be relevant. We (15)
suggested the relative risk (RR) method of combining data
on genetic markers with demographic information to obtain
a more detailed characterization of genetic influence on sur-
vival and longevity. In this paper we extended the RR
method to calculate the effects of hidden heterogeneity and

interaction. We show that taking these effects into account
can make the results of hypotheses testing significant after
correction for multiple comparison. We discuss basic as-
sumptions of this method and directions of further research.
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Five autosomal loci (APOB, REN, SOD1, SOD2, THO)
and the mitochondrial locus (mtDNA) were considered. All
these loci carry out biological functions that are expected to
be crucial in successful aging and longevity. The APOB
gene codes for apolipoprotein B, an exclusive protein of
low-density lipoprotein (LDL), the main carrier of choles-
terol in the blood. The REN locus codes for renin, an aspar-
tylprotease that catalyzes the first step of the biosynthetic
cascade leading to angiotensin 2. Both SOD1 and SOD2
code for superoxidodismutases that are involved in the
elimination of superoxide radicals. The THO gene codes for
tyrosine hydroxylase, the rate-limiting enzyme for the syn-
thesis of catecholamines. Lastly, the mitochondrial genome
contains genes for oxidative phosphorylation. The polymor-
phic systems were as follows: 3

 

9

 

APOB-VNTR [15 alleles
(16)], HUMREN.4 [five alleles, (17)], SOD1-D21S223 [nine

 

alleles (18)], SOD2

 

C/T

 

 [C/T alleles (19)], HUMTHO.1 [six al-
leles (17, 20)], mtDNA haplogroups [nine alleles, (21)].

The data on genetic markers for the group of centenarians
(aged 100 years and above) and the group of younger indi-
viduals (aged between 5 and 80 years) were obtained from
samples collected in both Northern and Southern Italy. Al-
together, 662 individuals were involved in the study; among
them were 54 male and 143 female centenarians, and 220
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male and 245 female younger individuals. Twenty-six male
centenarians were from Northern Italy, and 28 were from
Southern Italy. The number of female centenarians from the
North was 83 and from the South 60. The younger group
contained 75 men and 87 women from the North and 145
men and 158 women from the South. The distribution of
this data by sex and area is shown in Table 1.

The ages of the subjects ranged from 5 to 109 years (the
5- to 19-year-olds were schoolchildren; the 20- to 29-year-
olds were University undergraduate and graduate students;
the subjects over 100 years old were gathered into a larger
research project in progress in Italy; the others were volun-
teer donors). The samples used in this study were collected
by eight institutions in Italy from 1995 to 1997. The ages of
individuals in the centenarian group were verified by using
information from demographic censuses, church registers,
social security documents, and testimonies of relatives. The
data for this group were aggregated with respect to age. For
technical reasons, the number of individuals participating in
the analysis of some loci is less than that mentioned above,
so the number of observations for each gene varies (Table 2).

 

Relative Risk Method

 

The changes in gene frequencies with age within one co-
hort are produced by differences in hazard rates (risks of
death) associated with the respective genes. This property
suggests a new strategy for identifying frail and robust alleles.
Instead of comparing gene frequencies between centenari-
ans and younger individuals, one can evaluate and compare

 

relative risks of death and survival distributions associated
with different alleles by using the maximum likelihood
method. These characteristics, however, cannot be identi-
fied without additional information on survival in respective
age groups of individuals. Such information can be taken
from standard demographic life tables. Observed risk fac-
tors such as geographic area of residence and sex may also
be included in the likelihood function (15). The method of
obtaining parameter estimates by maximizing the likelihood
function of genetic data with demographic constraints, when
mortality rates for individuals, carrying respective genotypes,
are described by the Cox-type proportional hazard model
(22), is called the relative risk method. Cox’s model, widely
used in the analysis of survival data, has proven to be a reli-
able tool for the evaluation of the influence of observed co-
variates on survival. The key assumption of this model is
the multiplicative effects of influential factors on hazard
rate. The theoretical aspects of this method in application to
the analysis of survival data are investigated in an article
by Cox (22). We suggested the use of Cox’s model in the
new approach to the analysis of cross-sectional data on
genetic markers (15). This approach is a nontraditional one,
because only censored information about life span of in-
dividuals with genetic markers is available. Note that be-
cause of the assumption about the proportionality of haz-
ards, some details of genetic influence on survival may be
lost if mortality rates for candidate genes or genotypes cross
over. A comparison of methods used in genetic studies of
centenarians has been done by us (23). A version of the
RR method adjusted to our analysis is described in the Ap-
pendix.

In earlier research (15) we studied the effects of area, sex,
and candidate allele on mortality and longevity by using the
same sample of Italian data. The analysis of the allele–area
and allele–allele interaction effects, performed in this paper,
involves additional unknown parameters. To be able to pro-
duce reliable parameter estimates associated with interac-
tion effects, we decided to aggregate data for men and
women in this study and control only for regional differ-
ences. To show how data about area of residence and ge-
netic markers may be included in the model, let us consider
the hazard rate for an 

 

x

 

-year-old individual for whom these
data are available. Let us assume that the hazard rate for this
individual may be represented in a Cox form as

(22). Here 
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the mortality rate for individuals with all 
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 0. Thus, the
survival function of an 
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-year-old individual can be repre-
sented as
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Table 1. Italian Data on Genetic Markers by Sex and Area*

 

Men Women Total

Younger Group
South 145 158 303
North 75 87 162
Total 220 245 465

Centenarian Group
South 28 60 88
North 26 83 109

Total 54 143 197
662

*Genetic information comes from five autosomal genes, APOB, REN,
SOD1, SOD2, THO, and mitochondrial DNA haplogroups.

 

Table 2. Sample Sizes Used for Each Polymorphic Locus*

 

Locus Polymorphism Alleles
Sample

Size

APOB 3

 

9

 

 APOB-VNTR 31,33,35,37,39,41,43,45,
47,49,51,53,55 261

SOD1 D21S223 1,2,3,4,5,6,8,10 354
REN HUMREN.4 7,8,10,11,12 295
THO HUMTHO.1 6,7,8,9,10,11 520
SOD2 (C/T)

 

401nt

 

C,T 256
mtDNA European haplogroups H,I,J,K,T,U,V,W,X, others 372

*The allele nomenclature refers to the number of DNA repeats [APOB, REN,
THO loci; see (11)]; to allele electrophoretic position (SOD1 locus); to C

 

→

 

T sub-
stitution [SOD2 locus; see (11)], and to restriction fragment length polymor-
phisms that define European mtDNA haplogroups [mtDNA; see (12)].
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In our study we assume an equal contribution of each allele
in homologous chromosomes in the survival process. This
assumption is natural when one cannot distinguish between
the effects of homologous chromosomes. This yields 
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, so the relative risk in individuals homozygous for the
candidate allele is RR
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is the risk in indi-
viduals heterozygous for the candidate allele. This assump-
tion allows us to use one unknown parameter (instead of
two) to characterize the effect of a candidate allele on sur-
vival. The same effect may be achieved by the introduction
of a covariate 

 

U

 

 which takes values 0, 1, and 2 (0 for the ab-
sence of a candidate allele in the locus, 1 for the presence of
one candidate allele, and 2 for the presence of two candidate
alleles). In case of such a description, the relative risk for in-
dividuals with the double copy of a given allele will be
squared automatically. We prefer to use our description be-
cause it is more convenient for the representation of allele–
allele interaction effects.

In the case of diploid (autosomal) loci, we have 

 

N
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 6
groups. Each group is characterized by the area (0 for North
and 1 for South), and one of three genotypes (0 for the ab-
sence of the candidate allele, 1 for the presence of this allele
in one of two chromosomes, and 2 for the presence of this
allele at both chromosomes). For the mtDNA locus we have
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 4 groups. It is convenient to represent the initial pro-
portions of individuals in each of six groups in terms of two
parameters: 
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 (the initial proportion of individuals from
Northern Italy) and 
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g

 

 (the initial frequency of the candi-
date allele in a population). For example, let us consider one
of the six groups for the APOB locus (say, group 

 

k

 

). As-
sume that this number refers to the group of individuals
from Southern Italy who have one candidate allele, say,
APOB31. This group is characterized by the survival func-
tion 
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is the initial proportion of individuals from Southern Italy,
and 2
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)is the initial proportion of heterozygous
genotype in the case of Hardy–Weinberg equilibrium with
one APOB31 allele. The other, say, group 

 

j

 

 of individuals
from the North of Italy who have one APOB31 allele has
the survival function 
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). Similar representations can
be written for each of the other four groups represented in
likelihood (A1) in the Appendix and for the case of mtDNA.

Such representations for the initial proportions of individ-
uals in the groups are based on two assumptions. The first is
that the events of having a certain genotype with respect to a
candidate allele and being a resident of Northern or South-
ern Italy for an individual are independent. The second is
that the population of individuals in the study is in Hardy–
Weinberg equilibrium. The first assumption is natural for

ri e
βiUi=

S0 x( ) e

µ0 u( )du

0

x

∫–

=

populations in which genes under study are equally repre-
sented in all regions. This is usually the case in countries
with high internal mobility and a relatively small area of
residence. The second assumption is traditional in genetic
studies. It provides a simple relationship between gene fre-
quencies and genotype frequencies (3). Otherwise, one has
to estimate five unknown initial frequencies for these groups.
In principle, these assumptions are statistically testable. Un-
fortunately, the sample size of our data is not large enough
to perform such testing.

Interaction Effects
To test for the interaction effects, we have to introduce

the allele–area and allele–allele interaction terms in the sur-
vival model. In this new model the survival function Si(x),
i 5 1,2,...6 is given in terms of the Cox proportional hazard
model with conditional hazards

,

where U1,U2,U3 are defined above, b2 5 b3, and interaction
variables U4 and U5 are respective combinations of U1
(area), U2 (allele), and U3 (allele at homologous chromo-
some); that is, U4 (area–allele, U4 5 1 when U1U2 5 1,
or U1U3 5 1, otherwise U4 5 0), and U5 5 U2U3 (allele–
allele).

Hidden Heterogeneity
Unobserved heterogeneity, also called frailty, is a major

concern in a survival analysis, where individual differences
cannot be safely ignored. To take hidden heterogeneity in
mortality into account, we use the gamma-frailty model
with mean 1 and variance s2 (24). In accordance with this
model,

(1)

The functional form of conditional survival function,
S (x,U1,...,U5), is derived in the Appendix. So, in addition to
regression coefficients, bi, and initial frequencies, p0n,p0g,
one has to estimate s2. The respective estimation procedure
is called the HRR method.

RESULTS

Separate and Joint Analyses
First we performed a separate analysis of data on differ-

ent alleles without taking interaction effects into account.
Table 3 shows the results of these calculations.

The first column in this table characterizes the allele. The
second shows the values of relative risks. The third and the
fourth show the standard error for the estimated value of rela-
tive risk and the p value for testing the null hypothesis that
relative risk is equal to 1 against the alternative that it is not,
respectively. The last two columns show the estimates of the
initial frequencies and their standard errors, respectively.

One can see from Table 3 that the relative risks of the area of
residence are all greater than 1. This observation allows us to

µ x,U1,U2,U3,U4,U5( ) µ0 x( )e

β jUi

j 1=
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perform the joint analysis of data for all alleles by assuming
that the effects of the area of residence are the same for all can-
didate alleles. The results of this analysis are shown in Table 4.

The first column in this table characterizes the allele. The
second shows the values of relative risks for alleles. The
third and the fourth show the standard errors for estimated
value of relative risk and the p value for testing the null hy-
pothesis that relative risk is equal to 1 against the alternative
that it is not, respectively. The fifth and the sixth columns
show the values of initial allele frequencies and their stan-
dard errors. The last two columns show the estimates of the
initial frequencies for the area of residence and their stan-
dard errors, respectively. The likelihood ratio test confirms
the legitimacy of the joint analysis.

Estimation of Interaction Effects
The results of a joint analysis of a model with interaction

effects are shown in Table 5. One can see from Table 5 that
the allele–area interaction is significant for the THO10 al-
lele (p value 5 .004). This interaction increases the hazard
rate of the THO10 carriers if they are residents of the South
of Italy. Without such an interaction, THO10 is a robust al-
lele. The THO9 allele becomes neutral in Table 5 with the p
value changed from .057 in Table 4 to .728 in Table 5, but a
significant allele–allele interaction effect is detected. This
effect substantially increases the hazard of death for indi-
viduals with two THO9 alleles (homozygotes). In contrast,
the allele–allele interaction for the REN11 allele has a ro-
bust effect. It reduces a carrier’s death rate by a factor of
0.8, although the allele itself is classified as a frail allele.

The Effects of Hidden Heterogeneity
Note that as a way to minimize the number of unknown

parameters, the same heterogeneity distribution for all eight
alleles was assumed, and its estimation was done in a joint
analysis of data. The highest value of likelihood is reached
at s2 5 0.66 (see Figure 1).

Table 3. Estimated Risks and Initial Allele Frequencies for the 
Italian Data*

Allele R
Standard

Error p Value
Initial

Frequency
Standard

Error

Estimates for Alleles
APOB31 1.089 .043 .042 .140 .015
D21S1 0.861 .079 .076 .025 .008
REN8 0.934 .036 .065 .731 .021
REN11 1.096 .045 .032 .160 .018
THO9 1.062 .034 .067 .221 .016
THO10 0.939 .030 .044 .199 .015
mtDNAhapl-V 0.789 .109 .052 .017 .008
mtDNAhapl-J 0.791 .057 .100 .028 .023

Estimates for Area
APOB31 1.095 .040 .016 .555 .030
D21S1 1.020 .041 .586 .462 .036
REN8 1.090 .046 .050 .421 .034
REN11 1.093 .046 .042 .423 .034
THO9 1.192 .040 .000 .662 .025
THO10 1.188 .040 .000 .661 .025
mtDNAhapl-V 1.088 .040 .027 .542 .030
mtDNAhapl-J 1.087 .040 .029 .541 .030

*The upper part of this table presents the estimates of relative risks and ini-
tial frequencies for the alleles whose relative risks differ significantly from
(p , .1). The lower part of the table shows respective estimates for the area of
residence (Southern with respect to Northern Italy). The following abbreviations
are used: APOB31 for APOB-VNTR.31; D21S1 for D21S223.1; REN8 for
HUMREN.8; REN11 for HUMREN.11; THO9 for HUMTHO.9; and THO10
for HUMTHO.10.

Table 4. Estimates of Relative Risks and Initial Frequencies Using 
the RR Method*

Allele rallele

Standard
Error p Value frallele

Standard
Error frarea

Standard
Error

APOB31 1.088 .043 .043 .139 .015 .561 .024
D21S1 0.865 .078 .086 .025 .008 .511 .027
REN8 0.932 .036 .057 .730 .021 .430 .027
REN11 1.096 .045 .032 .160 .018 .430 .027
THO9 1.064 .033 .057 .222 .016 .631 .021
THO10 0.939 .030 .040 .198 .015 .631 .021
mtDNAhapl-V 0.787 .109 .050 .018 .008 .552 .024
mtDNAhapl-J 0.844 .092 .090 .029 .010 .552 .024

*The model assumes the same risk for the area of residence for all alleles. Its
estimate is 1.110 with a standard error of .015. The estimates of relative risks
and initial gene frequencies for the alleles whose relative risks differ from 1
(p , .1) only are shown.

Table 5. Estimates of the Relative Risks, Initial Frequencies, and 
Interaction Terms for Allele–Area and Allele–Allele Interaction 

Using the RR Method*

Allele
Frequency

Allele Allele–Area Allele–Allele

Gene R p r p r p

APOB31 .140 1.124 .022 0.927 .204 — —
D21S1 .024 0.824 .042 1.129 .318 — —
REN8 .731 0.927 .047 0.958 .406 — —
REN11 .161 1.122 .041 1.053 .521 0.807 .061
THO9 .221 0.985 .728 1.067 .230 1.477 .033
THO10 .196 0.900 .002 1.155 .004 — —
mtDNAhapl-V .019 0.813 .155 0.947 .722
mtDNAhapl-J .028 0.745 .011 1.367 .094

*The risk of an area is taken to be the same for all alleles. Its estimate is 1.10
with a standard error of .015. In the last column, only cases with significant val-
ues of respective risks are reported. Shading indicates that allele–allele interac-
tion is not possible for mitochondrial haplotypes.

Figure 1. Graph of the profile of the log-likelihood (LLK) as a
function of s2.
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In calculation of the graph in Figure 1, the variance value
changed manually, and the RR method was applied with each
value of variance to estimate other parameters. Then the value
of the likelihood function was calculated at each point. Be-
cause of the complicated structure of the likelihood function,
this procedure was easier to perform than the direct likelihood
maximization with respect to all parameters. With the larger
data set, the heterogeneity parameters characterizing the
frailty distribution for each candidate allele can, in principle,
be estimated. The parameter estimates are shown in Table 6.

One can see from this table that taking heterogeneity into
account makes estimates of all relative risks more distinct
from 1. The estimates of interaction effects also changed.
The p value for the allele–area interaction term for the
TH10 allele increased from .004 (Table 5) to .017 (Table 6);
however, the interaction effect is still significant. The esti-
mates of all risks for the THO9 allele became nonsignifi-
cant, and they are not shown in the table. The significance
of the allele–allele interaction term for the REN11 allele in-
creased (the respective p value reduced from .061 to .017).

Figure 2 shows the age patterns of the estimated hazards
for Italian individuals carrying zero, one, and two D21S1 al-
leles, respectively. These estimates are obtained without
taking unobserved heterogeneity into account. Hazards are
shown in a logarithmic scale. One can see from this figure
that the hazard rate for carriers of the D21S1 allele is lower
than that for noncarriers, so the D21S1 is a robust allele. All
hazards have the same shape, as expected in the case of pro-
portional hazard assumption. The estimates of hazard rates
obtained in the case of separate and joint analyses practi-
cally coincide. Figure 3 shows the respective graph for the
REN11 allele. 

One can see from this graph that the REN11 is a frail al-
lele. The graphs in Figures 4 and 5 show the estimates of the

Table 6. Results of Estimation and Interaction Effects with
Hidden Heterogeneity* 

Allele
Frequency

Allele Allele–Area Allele–Allele

Gene R p r p r p

APOB31 .140 1.480 .074 0.783 .222 — —
D21S1 .023 0.504 .002 1.455 .401 — —
REN8 .730 0.759 .022 0.862 .432 — —
REN11 .163 1.483 .089 1.369 .393 0.481 .017
THO10 .192 0.686 .000 1.615 .017 — —
mtDNAhapl-V .017 0.492 .031 0.799 .589
mtDNAhapl-J .029 0.430 .000 2.716 .258

*The gamma-distribution with mean 1 and variance s2 was used for hetero-
geneity variable. The estimate of s2 5 0.66. The risk of area is assumed the
same for all alleles. Its estimate is 1.41 with a standard error of .014. Shading in-
dicates that allele–allele interaction is not possible for mitochondrial haplotypes.

Figure 2. Age patterns of the estimated hazards for individuals
carrying zero (thick solid line), one (dashed line), and two (thin solid
line) copies of the D21S1 allele in Italy. These estimates are obtained
in the joint analysis of eight alleles without taking unobserved hetero-
geneity into account. The graph is shown in a logarithmic scale.

Figure 3. Age patterns of the estimated hazards for individuals
carrying zero (thick solid line), one (dashed line), and two (thin solid
line) copies of the REN11 allele in Italy. These estimates are ob-
tained in the joint analysis of eight alleles without taking unobserved
heterogeneity into account. The graph is shown in a logarithmic scale.

Figure 4. Age patterns of the estimated hazards for individuals
carrying zero (thick solid line), one (dashed line), and two (thin solid
line) copies of the D21S1 allele in Italy. These estimates are calcu-
lated by using a survival model with heterogeneity. The graph is
shown in a logarithmic scale.
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hazard rates for the same genotypes as in Figures 3 and 4,
calculated with the heterogeneity model. One can see that
the classification of D21S1 and REN11 remains the same.
However respective mortality rates converge at old ages, as
the frailty model predicts. Figures 6 and 7 show the graphs
of empirical and estimated proportions of the carriers of
D21S1 and REN11 alleles in Italy.

One can see that the proportion of the D21S1 allele in-
creases with age, which indicates that it is a robust, or lon-
gevity, allele. The proportion of the REN11 allele declines
with age, which indicates that it is a frailty allele. All calcu-
lations were done by using the GAUSS software package
(25).

DISCUSSION

Despite evident progress in establishing a connection be-
tween specific genes and longevity (26), some aspects of
genetic studies for humans deserve additional efforts. In this
paper we show that the use of demographic information to-
gether with data on genetic markers can substantially im-
prove our knowledge about the role of genes in human mor-
tality and longevity. The possibility of estimating hazard
rates and survival functions for candidate genes opens a
new avenue for the study of genetic effects on survival.
Now, in addition to demographic information, the data and
results of epidemiological studies can also be involved in
the genetic analysis of longevity. This is because these stud-
ies often estimate values of relative risks or odds ratios for
individuals of different genotypes at some age intervals.
Such estimates must be consistent with the values of the
hazard rates of genes or genotypes obtained in genetic stud-
ies of aging and longevity. The use of not only genetic but
also epidemiological data, together with life-table demo-
graphic information, increases the power of the estimation
procedures, expands the class of identifiable models, and
permits us to address more sophisticated questions about
roles of genes and environment in human mortality and lon-
gevity. Thus future studies will involve more additional in-
formation about direct and indirect influence of genes on
health and survival.

When the sample size of genetic data is large enough, one
can use nonparametric methods to estimate hazard rates or
survival functions of genotypes from genetic and demo-
graphic data (23). In the case of a smaller sample size, the
nonparametric estimates become unreliable, and semipara-
metric or parametric methods of data analysis can be used to
improve the power of the estimation procedures. One has to
realize, however, that the quality of approximation of real
hazards may be compromised when parametric methods are
used. The RR method discussed in this paper allows for the
semiparametric estimation of the underlying hazards for re-

Figure 5. Age patterns of the estimated hazards for individuals
carrying zero (thick solid line), one (dashed line), and two (thin solid
line) copies of the REN11 allele in Italy. These estimates are calcu-
lated by using a survival model with heterogeneity. The graph is
shown in a logarithmic scale.

Figure 6. Graph of empirical (filled circles) and estimated (solid
line) proportions of the carriers of at least one D21S1 allele in Italy.
The estimates correspond to the survival model with heterogeneity.

Figure 7. Graph of empirical (filled circles) and estimated (solid
line) proportions of the carriers of at least one REN11 allele in Italy.
The estimates correspond to the survival model with heterogeneity.
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spective candidate genes or genotypes. This method allows
us to control for the effects of observed covariates, interac-
tion effects of genes, and gene–environment interactions.
Because the assumption of proportionality of hazard at the
entire age interval may be unrealistic, one can fit the RR
model at smaller intervals and get a closer approximation of
the real hazard rates for candidate alleles. In this case one
has to be sure that the sample size of the data is large
enough to get reliable parameter estimates at subintervals.

The RR method for combining genetic and demographic
information without taking the effects of heterogeneity and
interaction into account was suggested earlier (15). The idea
to apply the frailty model to the analysis of data on genetic
markers has also been discussed (23). This paper extends
this approach to the analysis of allele–allele and allele–area
interaction effects, as well as heterogeneity. The extended
model contains more unknown parameters, and hence the
power of the estimation procedure may be substantially re-
duced. To keep the number of unknown parameters at rea-
sonable level, we did not distinguish between male and fe-
male mortality rates in this study. So in eight analyses
shown in Table 3 and in the next Tables, the gender effect
was not taken into account. However, we did control for re-
gional differences. Tables 3 and 4 show the results of pre-
liminary calculations without interaction effects. The com-
parison of results from Tables 3 and 4 with Table 1 in an
eralier article (15) shows the difference in two detected al-
leles. The D21S6 allele is missed, and the allele THO9 is
added in our study. This difference in the two studies may
be attributed to the difference in the structure of respective
models. All other alleles, qualified as frail and robust, are
the same in both studies.

An analysis of the demographic situation in Italy shows
that Italian survival presents some significant regional dif-
ferences. In particular, the regions in Central Italy have a
lower mortality than regions in Northern and Southern Italy.
Northern Italy is less favorable for men. Southern Italy is
less favorable for women (27). Calculations based on our
data show a higher relative risk for the residents of Southern
Italy. This may be the result of a higher proportion of
women from Southern Italy in the control group and a lower
proportion of such women in the centenarian group in our
sample. Note also that for the effects of area and sex to be
represented correctly, the data should be consistent with the
demographic structure of respective populations. Other-
wise, the estimates of these effects cannot characterize the
population. Moreover, this inconsistency in the sample may
bias the results of the genetic analysis. The use of Cox’s re-
gression model with explicitly represented covariates al-
lows for the separation of the effects of genes from the ef-
fects of other influential factors on survival. However, the
question of sensitivity of the estimates of genetic parame-
ters to the changes in a composition of a sample of the data
deserves special study.

The ability to take unobserved heterogeneity into account
without changing the basic estimation procedure is an im-
portant advantage of the RR method. Such heterogeneity
may exist as a result of the effects of other genes, or envi-
ronmental factors not included in the analysis. The probabil-
ity distribution of hidden heterogeneity is usually unknown,

so its proper approximation is an important problem in a
frailty modeling. The use of gamma-distributed frailty be-
came popular because of its technical convenience, and be-
cause of its ability to explain deviant dynamics of mortality
rate at old ages (24). Other distributions used in frailty mod-
eling have also been discussed in the literature (28). A re-
cent comparative analysis of several frailty distributions
(29) used in genetic studies of susceptibility to death and
longevity shows that gamma-frailty is a reasonable model
for analyzing the effects of hidden heterogeneity in survival.
Figure 1 shows the profile of the likelihood as a function of
the variance of a frailty distribution calculated for a joint
analysis of eight candidate alleles. A better strategy would
be to estimate individual heterogeneity parameters for each
candidate allele. Our attempts to estimate such parameters
resulted in large standard errors. It is clear that more data
are needed to realize this idea.

The analysis performed in this paper assumes that (i) the
initial proportions of genotypes in all cohorts represented in
a cross-sectional study are the same and that (ii) the survival
functions of individuals carrying candidate alleles do not
depend on the birth year of the cohorts. These assumptions
were used in all earlier analyses of centenarian data cited in
this paper. It is clear, however, that these assumptions are
not realistic. In (23) we performed an analysis of sensitivity
of the parameter estimates to the violations of these assump-
tions. The analysis shows that condition (i) is most sensitive
to migration. This condition can be controlled by a histori-
cal demographic analysis of the data. The effects of differ-
ential total mortality between cohorts on observed gene fre-
quencies [violation of assumption (ii)] depend on the patterns
of allele–environment interaction. The details of such an in-
teraction are unknown and cannot be estimated from the
data used in our study. These effects may be small, if mor-
tality rates for candidate alleles change proportionally, or
large, if such interaction is more complex (23). Survival fol-
low-up of individuals who provided genetic information
will considerably strengthen the data.

The RR method developed in this paper is applied to sev-
eral alleles in each of selected loci to test whether they are
associated with longevity. For a given locus this procedure
deals with a multiple testing, and care must be taken in or-
der for the results not to be misinterpreted. Specifically, the
need for adjustment for multiple comparisons depends on
the question to be addressed by statistical analysis (30). In-
deed, let us assume that one is interesting in testing the null
hypothesis, H0, that a selected allele, say APOB31, is a neu-
tral one (i.e., whether the respective relative risk of death is
equal to 1). Because only one test is applied to this allele, no
adjustment for multiple comparison is needed.

If, however, one would like to test the null hypothesis,
H0APOB, that all alleles in the APOB locus are neutral, then
an adjustment for multiple comparison is needed. In this
case one analyzes data on each of 15 different alleles avail-
able in this locus, and test 15 null hypotheses, H0j, j 5
1,2,...15, that the selected allele is a neutral one (i.e., whether
the respective relative risk of death is equal to 1). Let a be a
common significance level for each of these tests. It is clear
that the significance level for testing the null hypothesis for
the APOB locus, aAPOB, is related to a as follows:
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One can see that in the case of high polymorphic loci, the
value of a must be extremely small to provide an adequate
significance level for testing the H0 hypothesis that all alleles
in the APOB locus are neutral. One can see from Tables 5 and
6 that taking into account interaction and heterogeneity effects
decreases the p values for the estimates of risks associated
with some alleles. For example, the p value for the THO10 al-
lele was .04 in Table 4; then it became .002 in Table 5 when
interaction effects were taken into account; and then it became
less than .001 in Table 6 when, in addition, hidden heteroge-
neity was taken into account. This reduction in p values
makes it possible to reject the null hypothesis for the THO
locus (with six alleles) after correction for multiple testing.

The analysis of genetic data performed in this paper assumes
that the mortality rate for some genes is lower (or higher) than
that for the others at the entire demographic age interval. In this
case the estimates of mortality rates for robust and frail alleles
do not intersect, the estimates for proportions are monotone
functions of age, and both GF and RR methods may be used
for classification of alleles as robust, frail, and neutral. In addi-
tion, the RR method allows us to estimate the hazard rates and
survival functions for respective candidate genes or genotypes.
The empirical patterns of gene frequencies shown in Figures 4
and 5 suggest that the proportional hazard assumption may be
too simplified and that the age trajectories of gene frequencies
are not necessarily monotone functions of age. The reason for
this may be an intersection of respective mortality curves for
candidate genes. The presence of such intersections has been
reported in studies (23,31) where other approaches to the anal-
ysis of genetic data on centenarians have been used. If hazard
rates for genotypes intersect at a very young or at a very old
age, the estimates of hazards calculated by the RR method still
can approximate the average genetic effects on survival. How-
ever, in more complicated cases, important details related to
the genetic regularities of aging process may be missed. For
this reason the use of several approaches to the analysis of ge-
netic data is recommended (23).

The intersection of hazard rates for carriers of different
genes or genotypes suggests that survival to age 100 and
more is not necessarily related to the presence of “robust
genes,” as it was generally believed before (5). Extended
survival might be the result of a more sophisticated process
of an organism’s adaptation to the stresses of life. As part of
this adaptation, genes responsible for a higher mortality at
the beginning or in the middle of life may become benefi-
cial at an advanced age (23). This effect may illustrate the
important relationship among the ability to adapt, aging,
and life span. Coping with the stresses of life, the organisms
of individuals with disadvantageous genotypes are able to de-
velop a higher “adaptation capacity” to the inevitable stresses
of aging than those individuals with robust genotypes. If such
adaptation mechanisms are in fact in effect, then the candi-
date genes also have to be searched for among those genes
that produce a survival disadvantage earlier in life.
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Appendix

The Likelihood Function
Let pi(x), i 5 1,2,...N be the proportion of x-year-old individu-

als from the ith group in some cross-sectional study performed in
year T, and let Nix be the respective numbers of individuals ob-
served in this study. Then the likelihood function of the data is

(A1)

where

and

. (A2)

Here pi represents the initial proportion of individuals from group
i. Note that if data start from age x0, then pi denotes respective pro-
portion at this age. For each i 5 1,2,...6, the survival function Si(x)
is represented in terms of the Cox (22) proportional hazard model
with conditional hazards

(we assume here that b2 5 b3) and with the respective combina-
tion of values for U1, U2, and U3.

Estimation Procedure
The likelihood, Equation (1), must be maximized with respect to

parameters p0n, p0g and risks RRi 5 ebi, i 5 1,2 under the constraint

L πi

i 1=

N

∏
x x0=

X

∏ x( )Nix,∼

πN x( ) 1 πi x( ),
i 1=

N 1–

∑–=

πi x( )
piSi x( )

p jS j x( )
j 1=

N

∑
---------------------------=

µ x,U1,U2,U3( ) µ0 x( )e

β jU j

j 1=

3

∑
=

(A3)

Here the values of survival functions S(x) are taken from the offi-
cial demographic life tables for the Italian population for 1996.
The values of Sj(x) depend on

,

and RRi 5 ebi, i 5 1,2. The estimation procedure, which takes into
account constraint (A3), starts with the maximization of likelihood
(A1) with respect to initial proportions p0n, p0g and risks RRi, i 5
1,2,3, taking the initial guess of S0(x) to be equal to, say, S(x) (which
is a known function of x). Then the estimates of p0n, p0g and risks RRi,
i 5 1,2,3 are substituted into Equation (A3), from which the second
guess of S0(x) is calculated. This guess is substituted in Equation (A1)
with unknown parameters, p0n, p0g, and RRi, i 5 1,2,3. Then likeli-
hood (A1) is maximized again to produce a second guess of these pa-
rameters, and the procedure is repeated until convergence occurs.

The Likelihood Function in the Case of Joint Analysis
The joint analysis of data for several candidate alleles makes

sense when some parameters in eight likelihood functions are the
same. In our analyses we assume the same risk for the area of resi-
dence R1 (i.e., regression coefficient b1 is the same for all candi-
date genes). In this case the likelihood function of joint data is

. (A4)

Here

n 5 8, and

. (A5)

Here  represents the initial proportion of individuals in group i
for the kth candidate allele.

Survival in Heterogeneous Population
Let U denote vector U1,U2,...,U5, and let S(x|Z,U) 5

S(x,U1,U2,...,U5,Z) be conditional the survival function corre-
sponding to hazard (1):

(A6)
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Let frailty Z be gamma distributed with mean 1 and variance s2.
Then

. (A7)

here

is the probability density function for gamma distribution with the
shape parameter k, and the scale parameter l, and G(k) denotes a
gamma function. The mean of this distribution is

,

and the variance

.

To calculate equation (A7), note that this equation can be rewritten
in the form

S x U( ) e zH x ,U( )– zk 1– λke λ z–  dz
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0
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(A8)
and because the integral in Equation (A8) is equal to 1 we get

.

Taking into account that

,

and hence

,

we get

. (A9)

This survival function is used to characterize proportions of indi-
viduals in respective groups in the likelihood function.
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