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Summary

In this paper, we apply logistic regression models to measure genetic association with human survival for highly
polymorphic and pleiotropic genes. By modelling genotype frequency as a function of age, we introduce a logistic
regression model with polytomous responses to handle the polymorphic situation. Genotype and allele-based
parameterization can be used to investigate the modes of gene action and to reduce the number of parameters, so
that the power is increased while the amount of multiple testing minimized. A binomial logistic regression model
with fractional polynomials is used to capture the age-dependent or antagonistic pleiotropic effects. The models
are applied to HFE genotype data to assess the effects on human longevity by different alleles and to detect if an
age-dependent effect exists. Application has shown that these methods can serve as useful tools in searching for
important gene variations that contribute to human aging and longevity.

Introduction

The traditional case-control design has been popu-
lar in genetic association studies on human aging and
longevity (Kervinen et al. 1994; Schachter et al. 1994;
De Benedictis et al. 1997, 1998a,b; Bathum et al. 1998,
2001; Wang et al. 2001). As aging is a continuous pro-
cess, some important trajectory in and between the
cases and controls could be missed by the traditional
case-control approach. A proper model should be able
to cover the aging process, instead of simplifying it
into a couple of stages such as young controls and old
cases (Pletcher & Stumpf, 2002). This is important not
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only in consideration of statistical power, but also as
it is demanded by the complexity of the aging pro-
cess. Because the force of natural selection diminishes
after the age of reproduction, genes that become dele-
terious only at later ages can survive selection (Rose,
1991). As a consequence, antagonistic pleiotropic ef-
fects could play an important role in the biology of ag-
ing (Schachter et al. 1994; De Benedictis et al. 1998b).
Another complexity of studying aging is that the genes
involved can be highly polymorphic, for example, the
HLA-DRB1 (Ivanova et al. 1998), HUMTHO1.STR
(in the tyrosine hydroxylase TH gene) (De Benedictis
et al. 1998a; Tan et al. 2002a), CYP2D6 (cytochrome
p450 genes) (Bathum et al. 1998), 3′APOB-VNTR (De
Benedictis et al. 1998b) and APOE (Kervinen et al. 1994;
Gerdes et al. 2000; Schwanke et al. 2002; Slooter et al.
2001; Wang et al. 2001) polymorphisms. The polymor-
phic situation imposes another power problem onto the
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case-control approach because of the large number of
alleles, w, and consequently the large number of geno-
types, w (w + 1)/2, to be tested in a limited sample size.
Recently developed statistical methods based on survival
analysis have been applied to cope with some of the
problems (Toupance et al. 1998; Yashin et al. 1999). Tan
et al. (2001a) introduced a robust non-parametric ap-
proach that combines the individual genetic data with
population survival information to infer the effects of
genes. Although it is intuitive to deploy survival anal-
ysis in this case, an obvious limitation is the propor-
tional hazard assumption which takes for granted a fixed
or constant genetic effect on hazard of death over the
ages. In this paper, we introduce the logistic regression
model as an alternative to survival analysis to assess gene-
longevity associations. The logistic regression model is
popular in epidemiological studies. However, our ap-
proach here has the following three features: (a) although
we are looking at the genetic effect on individual sur-
vival, instead of modelling survival as a function of geno-
type, we model genotype frequency as a function of age.
This is because, even though we know that our samples
are composed of young controls and old cases, we don’t
actually know their life spans without a tedious and ex-
pensive follow-up. The survival information we get is
completely censored in a cross-sectional study. Mod-
elling genotype frequency as a function of age avoids
this problem. (b) as will be shown later, modelling geno-
type frequency as a function of age facilitates an ele-
gant way to handle highly polymorphic genes by us-
ing genotype and/or allele-based parameterization. (c)
modelling genotype frequency as a function of age offers
the opportunity to model age-dependent pleiotropic ef-
fects. Given the complexity in the aging process and
the character of the phenotype, an efficient statistical
method is appealing. In this sense we hope our meth-
ods, characterized by the above three features, will be of
help.

In this paper, we start with a description of the logistic
regression models, including the motivations of model
specification and parameterization as well as their impli-
cations. This is followed by an application of the mod-
els to an empirical data set collected in an association
study on HFE (haemochromatosis) gene polymorphism
and human longevity (Bathum et al. 2001). Finally, we
briefly compare the models with other approaches and

discuss the pros and cons of our methods in practical
applications.

Methods

A Multinomial Logistic Regression Model
for Polymorphic Genes

Suppose there is one polymorphic locus hosting w al-
leles. Then we could expect to observe n = w (w +
1)/2 distinct genotypes at the locus. As mentioned be-
fore, because we don’t observe an individual’s life span,
we turn our interest to the age pattern in genotype fre-
quencies. If the gene is associated with survival, geno-
type frequencies will change with increasing age as a
result of differential survivals. In this case, it is natural to
define the nominal genotypes as polytomous responses
and the continuous age as an explanatory variable. By
assigning one genotype as baseline, we can model the
baseline-category logits for n − 1 genotypes as linear
functions of age, x. If allele w is the wild type (or the
most frequent) allele, we can assign homozygotes of
the wild-type allele, AwAw, as the baseline genotype.
With this parameterization, we obtain the multinomial
logistic regression model with n polytomous responses
as

ln[πi, j (x)/πw ,w (x)] =

{
αi, j + βi, j x i = j

ln 2 + αi, j + βi, j x i < j

αw ,w = 0, βw ,w = 0 i, j = 1, 2, . . . . . . w (1)

Here π i, j (x) is frequency at age x for genotype AiAj and
πw ,w (x) is frequency at age x for homozygous genotype
of the wild-type allele. Similar to any linear regression
model, age related changes in genotype frequency are
presented by the slope parameter. A β i, j significantly
different from zero means that frequency of genotype
AiAj goes up if β i, j > 0 or down if β i, j < 0. Because
at any age x,

∑
i, j πi, j (x) = 1, rearranging (1) we have

πi, j (x) =

{
exp(αi, j + βi, j x)/[1 + H(x)] i = j

2 exp(αi, j + βi, j x)/[1 + H(x)] i < j

(2)

In (2) H(x) is the sum of odds ratios, π i, j (x)/πw ,w (x)
as expressed in (1), over all genotypes except
the baseline genotype at age x. Based on the
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multinomial distribution and the observed genotype
frequency by age, a likelihood function can be con-
structed to estimate the corner and the slope parameters
in (1).

It is interesting to see that, by setting age x to zero,
we obtain genotype frequency at birth as

πi, j (0) =

{
exp(αi, j )/[1 + H(0)] i = j

2 exp(αi, j )/[1 + H(0)] i < j
(3)

Here we see that the intercept, unimportant in most tra-
ditional regression analysis, becomes important in (1) as
it represents genotype frequency at age zero. Moreover,
(3) offers an opportunity to reduce drastically the num-
ber of intercepts in our model. Since it is sensible to as-
sume Hardy-Weinberg equilibrium for gene frequency
at birth if the population is homogeneous (a precondi-
tion for any association study), genotype frequency at
birth can be predicted from allele frequency, as no dif-
ferential survival yet exists. With this in mind, instead
of each genotype we assign in (1) one intercept for each
allele and let αi, j = αi + α j . Given Hardy-Weinberg
equilibrium, we have

πi (0) = exp(αi )/
√

1 + H(0),

π j (0) = exp(α j )/
√

1 + H(0)

πi, j (0) = 2 exp(αi + α j )/[1 + H(0)]

= 2πi (0)π j (0) i < j

(4)

In (4), π i (0) and π j (0) are allele frequencies at birth
for alleles Ai and Aj. Replacing αi, j in (1) with αi +
α j , we only have w − 1 instead of w (w + 1)/2 − 1
intercepts to be estimated. Here we also have αw = 0
so that, similar to (1), αw ,w = αw + αw = 0.

For a highly polymorphic gene, the number of geno-
types to observe, n, increases rapidly with the number
of alleles, w. Assigning each genotype one slope param-
eter will result in low power of the model especially
when the sample size is small. One parsimonious way
to circumvent the problem is to assume effects of the
alleles, in term of odds ratio that are multiplicative so
that the genotype-specific slope parameters can be de-
composed into allele-specific slope parameters, β i, j =
β i + β j with β i for allele Ai and β j for allele Aj. This
further simplifies (1) into an extra parsimonious model
with only allele-specific parameters. Similar to the in-

tercepts, we have only w −1 slope parameters. The total
number of parameters to be estimated in (1) is now only
2(w −1). For allele Aw, we have βw = 0 so that for the
baseline genotype AwAw, βw ,w = βw + βw = 0 which
is consistent with (1). The allele based parameteriza-
tion requires that, at any age x, the alleles in a given
individual are independent, or similarly the Hardy-
Weinberg equilibrium holds. In this situation, Sasieni
(1997) showed that the statistic using allele-based param-
eterization is most powerful as long as the allele effect is
multiplicative.

As an important phenomenon, gene-sex interaction
or sex dependent effect has been reported in gene-
longevity association studies (Ivanova et al. 1998; Tan
et al. 2001b, 2002b). To capture the sex-dependent ef-
fects, we can specify in our model sex-specific slope
parameters so that sex-specific effects, can be measured
separately. The intercepts remain unchanged because ac-
cording to the law of segregation, allele frequency for an
autosomal gene should be equal at birth in both sexes. To
model the sex-dependent effect, we extend and rewrite
(1) as

ln[πi, j (x)/πw ,w (x)] ={
αi, j + βi, j,m xU + βi, j, f x(1 − U ) i = j

ln 2 + αi, j + βi, j,m xU + βi, j, f x(1 − U ) i < j

i, j = 1, 2, . . . . . w αw ,w = 0, βw ,w ,m = 0,

βw ,w , f = 0 (5)

Here U is an indicator for sex, U = 1 for males and 0
for females. Statistical tests can be applied to infer if the
slopes are different in the two sexes. One can certainly
fit (1) to males and females separately, but that doubles
not only the number of slope parameters but also the
number of intercepts.

Unlike in survival analysis, we don’t estimate geno-
type specific hazard functions in our logistic regression
model. However, as an equivalent measurement we can
calculate genotype specific odds ratios to show how car-
rying one specific genotype or allele can increase or
decrease the probability of surviving to a certain age.
Studying odds ratios can help us to understand the im-
plication of the slope parameters in our model. From
(1), we first calculate the log odds ratio between ages x
and x −1 for genotype AiAj as
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(ORi j,x/x−1) = ln{[πi, j (x)/πw ,w (x)]/[πi, j (x − 1)/

πw ,w (x − 1)]}
= βi, j x − βi, j (x − 1)

= βi, j

(6)

In (6), the intercepts are not shown because they cancel
each other out. (6) shows that the slope parameter rep-
resents the risk of surviving one more year for genotype
AiAj carriers, and such risk is independent of age which
is equivalent to the proportional hazard model. In the
multiplicative model, we have ORi j ,x/x−1 = exp(β i +
β j ) = exp(β i ) exp(β j ). In this case, it is interesting to
calculate the odds ratio for the heterozygous genotype
of the wild type allele, say AiAw, for age x and x −1.
Similar to (6) we have

ln(ORiw ,x/x−1) = ln{[πi,w (x)/πw ,w (x)]/[πi,w (x − 1)/

πw ,w (x − 1)]}
= βi x − βi (x − 1)

= βi

(7)

(7) means the risk of surviving one more year for het-
erozygous genotype AiAw is only determined by the
effect of allele i, because we set the wild type allele as
the reference or baseline allele with βw = 0.

For a polymorphic locus, it is important to have an
overall statistic to summarize the significance of the as-
sociation with survival at the locus as has been alone in
other association studies (Sham & Curtis, 1995). This
can be done by the standard likelihood ratio test, by
comparing the likelihood of the parameter estimates and
that obtained by setting all the slope parameters to zero.
A chi-squared statistic where the degrees of freedom
equals the number of slope parameters (the number of
alleles or genotypes minus one depending on the model
fitted) can be calculated for statistical inference.

A Binomial Logistic Regression Model with
Fractional Polynomials for Pleiotropic Genes

Schachter et al. (1994) reported a pleiotropic age-
dependent effect on longevity by a variant of the ACE
(angiotensin-converting enzyme) gene. Although the
gene variant is associated with coronary heart disease,
it is also more frequent in centenarians. In another
study, a significant age-dependent frequency trajectory

for one 3′APOB-VNTR polymorphism was observed
(De Benedictis et al. 1998). According to the concept
of antagonistic pleiotropy, genes that have deleterious
effects at later ages can survive selection if they convey
beneficial effects at early ages. Since the observed age-
dependent gene frequency pattern can imply important
biological mechanisms in the process of aging, mod-
elling the antagonistic effects is appealing. In order to
accommodate the age-dependent frequency pattern, we
apply a logistic regression model with fractional polyno-
mials (Royston & Altman, 1994). Suppose we observe
an age-dependent frequency pattern for one genotype
or allele at a locus; our task is to test and find out if the
observed pattern is significantly different from random.
In a binomial logistic regression model with fractional
polynomials (Hosmer & Lemeshow, 2000), we have

ln{π (x)/[1 − π (x)]} = α +
k∑

i=1

Fi (x)βi (8)

In (8) F i(x) is a power function for age x. The first term
in F i(x) is x p1 , and the rest are defined as

Fi (x) =

{
x pi , pi �= pi−1

Fi−1(x) ln(x), pi = pi−1 i = 2, . . . , k
(9)

Although the power for F i(x), Pi , can be any number,
Royston & Altman (1994) suggested restricting it within
a set, ϕ = {−2, −1, −0.5, 0, 0.5, 1, 2, 3}. Here p i = 0
means the log of age x. The number of covariates in (8),
k, is not restricted, but in most cases it is adequate to set k
to 2. With k = 2, the model with the largest likelihood
is chosen as the best model from the 36 models, each
fitted to one of the distinct pairs of power. The partial
likelihood ratio test (Royston & Altman, 1994) can be
applied to compare (a) the best k = 1 model with the
linear model with 1 degree of freedom; (b) the best
k = 2 model with the best k = 1 model with 2 degrees
of freedom; (c) the best k = 2 model with the linear
model but with 3 degrees of freedom.

From (8), we can calculate the log odds ratio between
ages x and x −1 as

ln(ORx/x−1) = ln{π (x)/[1 − π (x)]} − ln{π (x − 1)/

[1 − π (x − 1)]}

=
k∑

i=1
[Fi (x) − Fi (x − 1)]βi

(10)
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(10) means that, unlike (6) and (7), the risk of surviving
past age x is dependent on x. Later we show how the
fractional polynomials model the age-dependent pattern
of gene action during the aging process.

Applications

Located in the major histocompatibility complex region
on chromosome 6, the HFE gene mutation C282Y (a
cysteine to tyrosine mutation at amino acid 282) has
been identified as the main genetic basis of hereditary
haemochromatosis (HH). Recently, association of the
HFE gene mutation with human longevity has been re-
ported (Bathum et al. 2001; Lio et al. 2002). Two exons
of this gene were screened in the study by Bathum et al.
(2001), with exon 2 hosting the two mutations H63D
and S65C, and exon 4 the C282Y mutation. Here we
use an update of the data in Bathum et al. (2001) as
an example to show how our models can be applied
to handle polymorphic and pleiotropic situations. The
updated data contains blood samples from 953 unrelated
singletons from the middle aged Danish twin study, 400
singletons from the Longitudinal Study of Aging Danish
Twins (LSADT), 601 individuals from the Danish 1905
cohort, and 183 centenarians from all over Denmark.
Genotyping was carried out in two stages: in stage 1,
both exons 2 and 4 were screened but only in 599 in-
dividuals (200 from LSADT, 200 from the middle aged
Danish twin study, 199 from the Danish 1905 cohort).
Bathum et al. (2001) found no significant association
between HFE gene mutation and life span using the
stage 1 data (Table 1). In the second stage, the genotyp-
ing continued but only in exon 4. Analysis of exon 4 data

Table 1 HFE genotype frequency in 599 individuals screened in
exons 2 and 4

Age group

Genotype 45–54 55–64 65–74 75–84 85–94 Total

Wt/Wt 48 53 61 71 141 374
Wt/H63D 14 19 26 23 52 134
H63D/H63D 0 2 1 1 4 8
Wt/S65C 2 4 4 1 5 16
H63D/S65C 0 1 0 0 1 2
Wt/C282Y 16 7 8 9 20 60
H63D/C282Y 0 3 1 0 1 5
Total 80 89 101 105 224 599

Table 2 Parameter estimates by the multinomial logistic regres-
sion model on stage 1 data∗

Intercept Slope

Allele Est. Std p-value Est. Std p-value

H63D −2.139 0.444 0.000 0.004 0.006 0.446
S65C −3.123 1.147 0.007 −0.012 0.015 0.456
C282Y −1.375 0.633 0.030 −0.017 0.009 0.047

∗The wild type allele is assigned as the baseline allele

showed a significant age effect on C282Y heterozygous
genotype frequency, which declines with increasing age
(Bathum et al. 2001). However, the frequency rises in
the centenarian group, suggesting an antagonistic effect
of the gene at extreme ages.

In the stage 1 data, 7 genotypes were observed in the
599 individuals from age 45 to 93. Bathum et al. (2001)
observed no significant deviation from Hardy-Weinberg
equilibrium in this data. After grouping the data by age
and genotype, Table 1 becomes a sparse table with many
small cell counts, which causes problems in conventional
statistical analysis. By allele-based parameterization and
assigning the wild type allele as the baseline allele, we
applied our parsimonious model to the stage 1 data and
estimated intercept and slope parameters for each of the
3 mutant alleles, H63D, S65C and C282Y (Table 2).
Of all the slope parameters, only β3 for C282Y showed
a borderline significance. Slope parameters for H63D
and S65C are not statistically different from zero, which
means their frequencies are independent of age. Since
β3 is negative, the frequency of C282Y carriers tends
to decrease with increasing age. In Figure 1 we plotted
the observed and estimated frequencies for the C282Y
allele by age. As expected, the C282Y allele frequency
shows a decreasing pattern as age increases. However,
after performing the likelihood ratio test, we found that
a significant association with survival cannot be estab-
lished for this locus using the stage 1 data (χ 2

(3) = 2.228,
p = 0.527).

In Table 3, we present the frequency of C282Y car-
riers by age in the exon 4 data, as calculated by Bathum
et al. (2001) but with males and females combined. The
frequency of C282Y carriers again shows a declining
pattern with age, but with a considerable increase in the
centenarians. Here we fit a binomial logistic regression
model with fractional polynomials to see if there is
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Figure 1 Observed (599 individuals) and fitted age patterns of C282Y allele frequency by the
multinomial logistic regression model. As expected, both decrease as age advances.

Table 3 C282Y allele carriers frequency by age in the update

Age
C282Y
Allele 45–54 55–64 65–74 75–84 85–94 100

(+) 93 33 23 20 53 25
(− ) 571 181 192 223 565 158
Freq. 0.140 0.154 0.107 0.082 0.086 0.137

Table 4 Parameter estimates by the fractional polynomial model
with k = 2

Parameter Est. Std p-value 95% CI

β1 −0.018 0.007 0.009 −0.032 −0.005
β2 0.007 0.003 0.011 0.002 0.013
α −2.285 0.134 0.000 −2.549 −2.022

a significant age-dependent effect for this mutation.
Table 4 shows the results for the best model among
the 44 models, by setting k to 2 (8 models for
k = 1 and 36 models for k = 2). In the best model,
F 1(x) = (x/10)3 − 385.1 and F 2(x) = (x/10)3 ln(x/

10) − 764.2. All the coefficients are highly sig-
nificant. In Figure 2, we show the observed and
estimated frequencies of C282Y carriers. The fitted

curve (dashed) from the fractional polynomial model
indicates that the frequency of C282Y allele carriers
decreases with age until around age 80, and then
starts to increase at later ages. In order to make sure
that the best fitted pattern is significantly different
from the best k = 1 and the linear model, we compared
the three models by the likelihood ratio test described
above. The fits of both the k = 2 and k = 1 models
are not significantly better than the linear model.
The partial log likelihood ratio statistics for the best
k = 2 model to the linear model is 4.727, which failed to
reach the 5% significance level designated by χ 2

(3)0.05 =
7.81. In the linear model, we obtain the intercept
α = −1.318 (Std = 0.259, p = 0.000) and the slope
parameter β = −0.010 (Std = 0.004, p = 0.005). In
Figure 2, we also plot the fitted frequency for C282Y
allele carriers (solid) by the linear model. Again, we see a
constantly declining pattern. Our results from different
models applied to the HFE gene data suggest that the
mutant allele C282Y is a deleterious allele that increases
carriers’ risk of death. Although it tends to convey sur-
vival advantage at extreme ages, our data can’t confirm
yet that such a pleiotropic effect exists for this mu-
tation. The above significant finding is also supported by
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Figure 2 Observed and fitted age patterns of C282Y allele frequency in the updated data (2137
individuals). The linear model shows a constantly declining pattern but the nonlinear model gives
a declining and then going up pattern. However, the nonlinear fit does not differ significantly
from the linear one.

a χ 2 test in Table 3 (χ 2 = 15.97, p-value = 0.007).
However, such a simple test can in no way capture the
nonlinear frequency pattern, and runs into problems as
in Table 1.

Discussion

Modelling genotype frequency as a function of age, by
fitting a logistic regression model with polytomous re-
sponses, offers an elegant way to handle polymorphic
data in longevity studies. By allele-based parameteriza-
tion, we show through application how our parsimo-
nious model can make use of sparse data (Table 1). Our
example showed that the model picked up important
clues from a relatively small data set (599 individuals)
that were missed in previous analyses. To some, the
multiplicative assumption in the allele-based parsimo-
nious model may appear risky. However we think, as a
trade-off, it is useful when sample size is small and other
models are inadequate. The multiplicative assumption as
used by Risch & Merikangas (1996) is popular for sum-
marising epistatic risks in mapping genes for complex

diseases (Risch, 1990; Clayton & Jones, 1999; Wright
et al. 1999; Koeleman et al. 2000). As a biological sup-
port, Dubois et al. (2002) reported multiplicative ge-
netic effects by the prion protein gene polymorphism in
scrapie disease susceptibility. Nevertheless, we think the
genotype-based analysis should be carried out when-
ever feasible, because such analysis can help to estab-
lish whether the allele effect is recessive, dominant, or
codominant (Sasieni, 1997).

Toupance et al. (1998) proposed a parametric sur-
vival model for analyzing antagonistic pleiotropic genes.
A Gompertz-Makeham model was used to model
genotype-specific survival functions by incorporating
population survival. We think that there are several dif-
ficulties with their approach. First of all, it is not a
good idea to impose a specific form of survival distri-
bution on a subgroup in a limited sample, because both
the choice of a parametric form and the sample size
limitation will result in considerable error in estimat-
ing the genotype-specific survival distributions. Conse-
quently, the age-dependent frequency pattern resulting
from differential survival will be unreliable. This is more
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serious at extreme ages when sample collection becomes
very difficult. In addition, at old ages, the validity of the
Gompertz-Makeham model becomes more question-
able. Any pattern based on these uncertainties can be
doubious if not arbitrary. Antagonistic pleiotropic ef-
fects can also be modelled by applying frailty modelling
(Vaupel & Yashin, 1985; Yashin et al. 1999). However,
estimation of the heterogeneity parameter is problematic
in small scale studies. In this case, it is our experience that
a very small change in the heterogeneity parameter can
lead to a big difference in the fitted frequency pattern.
After all, we think that the application of a paramet-
ric survival model and the interpretation of the results
should be carried out with caution. By simply testing if
an age-dependent gene frequency pattern exists using a
logistic regression model, all these complications can be
avoided. Whenever a significant trend is established, we
leave room for biological explanations.

The multinomial logistic regression model introduced
in this paper also facilitates a measurement of an overall
association with survival at a given locus by the standard
likelihood ratio test. This is important when investigat-
ing polymorphic loci because the high number of alleles
or genotypes creates multiple testing problems which
have been ignored by the recent approaches based on
survival analysis (Yashin et al. 1999; Tan et al. 2001a).
Adjusting for multiple comparisons is problematic, as
the alleles residing at a given locus are not independent.
In our analysis, a conclusion based on a significant asso-
ciation for an allele can only be made when the overall
statistic is significant.

Although our approach avoids the complexity of sur-
vival modelling, there are also problems connected with
the simplification. As mortality is low at younger ages,
one cannot expect a rapid change of allele or genotype
frequency in the population. Because the logistic regres-
sion model only models the frequency trend observed in
the sample, which may not be representative of the pop-
ulation in general, a steep slope might be fitted to the
early ages which does not make much sense biologically.
Since our goal is to study aging and longevity this may
not be a problem. In any case, efforts should be taken to
make sure that the samples are representative and the age
structure of the sample is reasonable. Moreover, similar
to other association studies, efforts are also needed to
ensure ethnic homogeneity in sample collection so that

spurious results due to population stratification can be
avoided.

As a complex trait, longevity is likely to involve the
interplay of many loci (De Benedictis et al. 2001). Mul-
tilocus approaches have been proved to have more power
in linkage disequilibrium studies using case-control and
family-based control designs (Akey et al. 2001; Risch,
2001; Fallin et al. 2001). In the multilocus approach,
haplotype-based analyses are applied to detect unique
regions that harbour disease genes. Though in longevity
studies missing parental genotypic information prevents
us from determining phase and assigning haplotypes, ap-
proaches based on the EM (expectation-maximization)
algorithm can be applied to estimate haplotype fre-
quency using unrelated individuals (Xie & Ott, 1993;
Zhao & Sham, 2002). Estimating haplotype frequencies
is beyond the scope of this paper. However we think,
by incorporating haplotype construction, future work
should be able to expand our model to multilocus geno-
type data.

Conclusions

We have shown through an example that, as an al-
ternative to other approaches, the logistic regression
model can be used to measure gene-longevity associ-
ations. Modelling genotype frequency as a function of
age by fitting logistic regression models: (a) offers us a
good way to model genetic association with longevity at
polymorphic loci; (b) enables us to model age-specific
or pleiotropic effects, which the relative risk or propor-
tional hazard models cannot accommodate; and most
importantly (c) measures genotype or allele effects. In
addition, as a popular method in epidemiology, most
statistical packages offer procedures for fitting logistic
regression models. Hence, useful information can be
obtained through easily performable data analyses. We
believe the methods presented in this paper will serve as
useful tools when looking for important genetic varia-
tions that modulate human life span.
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