
THEORETICAL POPULATION BIOLOGY 27, 154-175 (1985) 

Mortality and Aging in a Heterogeneous 
Population: A Stochastic Process Model with 

Observed and Unobserved Variables 

ANATOLI I. YASHIN 

International Institute for Applied Systems Analysis, Laxenburg, A-2361 Austria, 
and Institute for Control Sciences, Moscow, USSR 

KENNETH G. MANTON 

Center for Demographic Studies, 2117 Campus Drive, 
Duke University, Durham, North Carolina 27706 

AND 

JAMES W. VAUPEL 

Institute of Policy Sciences and Public Affairs, 
Duke University, Durham, North Carolina 27706, 

and International Institute for Applied Systems Analysis, 
Laxenburg, A-2361 Austria 

Received September 20, 1983 

Various multivariate stochastic process models have been developed to represent 

human physiological aging and mortality. These efforts are extended by considering 

the effects of observed and unobserved state variables on the age trajectory of 

physiological parameters. This is done by deriving the Kolmogorov-Fokker-Planck 

equations describing the distribution of the unobserved state variables conditional 

on the history of the observed state variables. Given some assumptions, it is proved 

that the distribution is Gaussian. Strategies for estimating the parameters of the 
distribution are suggested based on an extension of the theory of Kalman filters to 
include systematic mortality selection. Various empirical applications of the model 
to studies of human aging and mortality as well as to other types of “failure” 

processes in heterogeneous populations are discussed. 0 1985 Academic Press, Inc. 

I. INTRODUCTION 

A number of models of human aging and mortality have been developed 

which attempt to describe the physiological mechanisms underlying 

correlated changes in health and the risk of morbidity and mortality 
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Chap. 5 in Strehler, 1977). The essential components of such models are 
stochastic differential equations which describe the time-directed process by 
which individuals change position in a multivariate state space defined by 
physiological variables. For example, Sacher and Trucco (1962) produced a 
model that described physiological aging as a process which maintained 
homeostasis in a multivariate state space and mortality as an exceedance of 
a threshold value on some physiological variable beyond which the 
homeostatic forces were no longer effective. 

A recent alternative formulation has been presented by Woodbury and 
Manton (1977, 1983). The principle feature of this model is that human 
aging and mortality is described by two distinct processes. The first type of 
process is a random walk for the individual where the individual’s future 
profile of physiological values (i.e., his future physiological “state”) is a 
result of both a deterministic function of his current “state” and a stochastic 
term. The second type of process describes the risk of “mortality” as a 
probabilistic function of his current state. At the population level, Woodbury 
and Manton describe the change in the multivariate distribution of the state 
variables by a Kolmogorov-Fokker-Planck (KFP) equation. In the KFP 
equation, they specify four types of physiological dynamics: drift (i.e., 
systematic change in mean values), regression (i.e., convergence to mean 
values, due perhaps to homeostatic tendencies), diffusion (i.e., divergence due 
to random influences), and mortality selection (i.e., loss from the population 
of frail individuals). To apply the KFP equation they assume that the 
process is Markovian. The model has been applied to both epidemiological 
studies of chronic disease risk (Woodbury et al., 1979) and to longitudinal 
studies of normal aging processes (Woodbury and Manton, 1983; Manton 
and Woodbury, 1983). 

In this paper we generalize Woodbury and Manton’s model to deal with 
non-Markovian processes, measurement error, and the combination of 
observed and unobserved variables. We present our results in a way designed 
to show how additional information about the state variables influences an 
observer’s understanding of the temporal change of the physiological system. 

Our model is based on the assumption that each individual is charac- 
terized by a set of variables that change over time. Some of these variables 
are measured; the rest are not observed over time, but some information is 
available about them. Specifically, we assume knowledge of the probability 
distribution of the unobserved variables at the initial time zero as well as of 
the stochastic differential equations describing their random time path. The 
stochasticity in the aging process is generated by a Wiener (i.e., Brownian 
motion) process, as well as by the randomness in the initial values of unob- 
served variables. The force of mortality is a function of an individual’s 
position in the state space. 

We deal with the observed variables by developing a form of the KFP 
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equation that describes the change in the distribution of the unobserved 
variables conditional both on survival to age t and on the trajectories of the 
observed variables. We then show that if the force of mortality for an 
individual is a quadratic function of the unobserved variables, it is possible 
to estimate the means and variances of the unobserved variables over time. 
The equations used are similar to the Kalman filter equations developed by 
communication theorists to estimate signals. The equations, however, 
generalize the usual Kalman filter equations to include systematic mortality. 

The force of mortality as a function of age and observed life history can 
be directly estimated. As noted above, however, estimates based directly on 
the observed data pertain only to the surviving population and not to the 
population as a whole or to any homogeneous subgroup within it. The 
surviving population differs from the entire population because of systematic 
mortality selection. Specifically, individuals at high mortality risk on the 
unobserved variables will die off more rapidly and thus will be 
underrepresented in the surviving population. We show that, given the 
estimates of the means and variances of the unobserved variables, it is 
possible to calculate the force of mortality for individuals at age t with iden- 
tical observed as well as unobserved characteristics. Thus, the impact on 
aging and mortality of each of the observed and unobserved variables can be 
identified. 

The remainder of our presentation is organized as follows: 

(1) We describe three different formulations of a model of aging and 
mortality based on Woodbury and Manton’s suggestions. The first 
formulation describes the process for a single unobserved variable using a 
simple version of the Woodbury-Manton model. The second formulation 
shows how the basic process is modified to include observations of time of 
death. The third formulation introduces a second state variable which is 
continuously monitored over time. For these three cases, we derive the 
equations, based on the KFP equation, that give the (conditional) density of 
the unobserved variable. We discuss how the various increments in infor- 
mation affect the description of the dynamics of the aging and mortality 
process. In a fourth section of this part of the paper, we sketch two 
extensions of the model: we allow the stochastic differential equations that 
describe the trajectories of the variable to depend on the entire history of the 
observed variable, and we indicate how the model can be generalized to an 
arbitrary number of observed and unobserved variables. 

(2) We briefly review the restrictions and assumptions suggested by 
Woodbury and Manton to estimate the distribution of the unobserved 
variables. We make some analogous restrictions and assumptions and prove 
some results concerning the Gaussian form of the distribution. By extending 
the theory of Kalman filters, we present equations for the mean and variance 
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of this ditribution. In addition, we give the equation for calculating the force 
of mortality of individuals at time t with any specified set of observed and 
unobserved characteristics. 

(3) We discuss applications of the model to empirical studies of aging 
and mortality processes with observed and unobserved variables. 

(4) We conclude with a discussion of how our model of human aging 
and mortality relates to other attempts to study the general problem of deter- 
mining the effects on a stochastic process of systematic population loss due 
to mortality or other discrete state transitions. 

II. ALTERNATIVE FORMULATIONS OF A MODEL OF AGING AND MORTALITY 

A. The Basic Model 

In this section we describe a model of aging and mortality of the general 
type suggested by Woodbury and Manton (1977). To facilitate comparisons, 
we describe this model in terms of a single physiological or environmental 
variable Y(t): generalization to an arbitrary number of variables is in prin- 
ciple straightforward. In addition to the process describing changes in 
physiological states we will represent time of death by a nonnegative random 
variable T whose distribution depends on the path of Y(t) over the interval 
(0, t), denoted Yh. Hence, in addition to the evolution of Y(t) described by a 
stochastic differential equation, the model includes an additional random 
process that is described by a mortality indicator Z(t), where 

I(t) = 1 if T > t, otherwise Z(t) = 0. (1) 

The complete time path of each individual is thus described by Y,‘. This path 
is assumed to result from a random process in which the change in any value 
Y(t) is described by 

dY(t) = a(t, Y(t)) dt + b(t, Y(t)) dW(t). (2) 

In (2), W is a Wiener process that is independent of the initial value Y(O), 
which is a random variable whose distribution is known. In addition it is 
assumed that the coefficients a and b are known (e.g., estimated from an 
alternative data source or specified from theory). Though we have infor- 
mation on the temporal change of the distribution function we assume that 
we do not have information on the physiological state or mortality status of 
individuals, i.e., the individual values Y(t) and Z(t) are not known. The 
conditional distribution of T is given by 

P(T > t 1 y;) = e-&““.Y’““d”, (3) 
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where iu is a bounded function, assumed known, that can be interpreted as 
the force of mortality for individuals at time t with a specific value of Y(t), 
and where YG represents the entire history of Y from time 0 to time t. 

Let us define the joint density function of Y(t) and probability of event 
(T > t) as follows: 

S,(Y)=&‘W)SYJ> t)=$V’W$y,W= 1). (4) 

As Woodbury and Manton note, the change in this density function over 
time is governed by the Kolmogorov-Fokker-Planck equation: 

aft(Y) -= --$ [a(t,y)f,(y)] + +-$ [~2KJJM(Y)l -Pu(t?v>f,(v>* 
at (5) 

The three additive terms in this equation reflect the different forces 
affecting the dynamics of change in the distribution of Y(t). The first term 
describes the effects usually called drift and regression; the second term, the 
effects of diffusion; and the third term, the effects of mortality selection. 

B. The Model When Death is Observed 

Suppose now that the time of individuals’ deaths are observed, so that it is 
known whether T, the time of death for an individual, exceeds t. Define the 
conditional density of Y(t) by 

Then it follows from the more general proof outlined in Appendix A that 

W(Y) - = - 2 [a(t, y)f;“(y)] + t$ [b2kY).fFf;*(Y)I 
at 

(7) 

where 

,W) = El&y> I T > tl. (8) 

This generalization of the KFP equation is similar to (5) except for the 
additional factor given by (8). This factor, which may be interpreted as the 
expectation of the observed force of mortality at time t, renormalizes fi( y) 
to unit mass using the additional information known about survival. 
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C. The Model when Death and a Variable Are Observed 

Now suppose that there is an additional physiological or environmental 
variable X(t) that is observed for individuals over time. In particular, 
suppose that in addition to (1) the following two equations describe the time 
path of an individual: 

dY(t) = a(t, Y(t), X(t)) dt + b(t, Y(t), X(t)) . dW,(t) (9) 

and 

dX(t) = A(t, Y(t), X(t)) dt + B(t, x(t)) * dW,(t), (10) 

where W, and W, are Wiener processes independent of each other and of the 
initial values X(0) and Y(0). Define the conditional density of Y(t) by 

S:*(Y)=$V’WGYI T>t,%), (6’) 

where X6 represents the entire history of the process X from time 0 to time t. 
Then as indicated in Appendix A, 

- ,a y, X(t))f :: *(y) + WY JG)f :: *(Y> 

+fl* *(Y) * 
A (6 Y, x(t)> - $4 X:> 

wt, W)) . (dy, - x(t, K,) dt), (11) 

where 

&t, X;) = E(A(t, Y(t), X(t)) I T > t, X;). (12) 

Note the similarity of (11) to (5) and (7). The additional, final term in (11) 
describes the effect of observing X(t). 

D. Further Extensions of the Model 

The processes considered up until now have been Markovian processes: 
the coefficients in the stochastic differential equations (2), (9), and (10) 
depend only on the current values of the variables. That is, it is assumed that 
the current values on the individual’s physiological variables are reasonable 
approximations of the individual’s physiological “state” and, consequently, 
will determine the future changes of that state except for stochastic effects. 
When X(t) is observed, it is possible to generalize the process to depend on 
the entire time path Xi. This implies that the prior physiological charac- 
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teristics of the individual, and possibly the trajectory of change of those 
physiological characteristics, can be included in the definition of 
physiological state. For example, having elevated blood pressure at the 
current time may not be sufficient to describe the state of the individual with 
respect to mortality risks. Risk may be more dependent upon accumulated 
damage (perhaps represented by the elevation of pressure over a long period 
of time) or upon extreme values (e.g., the number of times a blood pressure 
threshold was exceeded). Such processes may be modeled by replacing X(t) 
in (9), (lo), (1 I), and (12) by Xh. A sketch of the proof is given in 
Appendix A. 

Each of the three formulations presented above can be readily extended to 
the general case of any number of state variables. This extension requires the 
substitution of the appropriate matrices. 

III. ESTIMATING THE UNOBSERVED VARIABLE 

Woodbury and Manton (1977) suggest some assumptions and restrictions 
for estimating the parameters of the observed process. Some of these will be 
useful for estimating characteristics of the unobserved variables. In the 
following we apply their general time series approach to the various 
formulations described above. 

A. The Basic Model 

Consider the first formulation of the model, presented above in 
Section II.A, in which neither an individual’s time of death nor an 
individual’s values on the state variable are observed. Assume that the 
distribution of individuals on this variable follows a Gaussian distribution at 
time 0. Furthermore, restrict the stochastic equation in (2) as follows: 

dY(t) = a,,(t) + al(t) Y(t) dt + b(t) dW,(t). (13) 

It is obvious that the distribution of Y(t) is Gaussian at any time t. The 
mean, m(t), and variance, y(t), of this distribution are given by 

dW 
- = adt) + a,(t) m(t) 

dt 
(14) 

and 

F = 2a’,(t) y(t) + b2(t). (15) 
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B. The Model when Only Death Is Observed 

Now consider the second formulation presented above. Assume that Y(t) 
has a Gaussian distribution at time 0 and that the force of mortality is a 
quadratic function of this variable: 

,a Y(t)> =Ldt> + Y(OPu@) + y’(t>P2(0 (16) 

Furthermore, restrict the stochastic differential equation in (2) as follows: 

dY(t) = a,(t) + a,(t) Y(t) dt + b(t) dW,(t). (17) 

It follows that the distribution of Y(t) conditional on I(t) = 1 or T > t (in 
other words, among the surviving population) is Gaussian at any time t: 
proof of this is a special case of the more general proof sketched in 
Appendix A; a specific proof may be found in Yashin (1983). The mean m(t) 
and variance y(t) of this distribution are given by 

dm(t) 
- = a&> + al(t) 4) - rW,W - Wt) yW~2W dt (18) 

and 

h(t) - = 2a,(t) y(t) - 2,u2(t) y2(t) + b2(t). 
dt (19) 

Note the additional terms in (18) and (19) compared with (14) and (15). 
The observed force of mortality is given by the following formula: 

P(t) = PO(t) + m(t) ,4(t) + (m20> + y(t)> P2W. (20) 

If restrictions are placed on the ,u’s in this formula-e.g., so that they are 
constant or follow certain specified functional forms-then it may be 
possible to estimate their values given the observed values of ,L. Another 
approach is to restrict (16) to 

P(& y(t)) = Y2(f) . cl(t). (21) 

This constraint is analogous to the formulation in Vaupel et al. (1979); Y2 
corresponds to the variable called “frailty.” The formula in (20) reduces to 

/w> = (m’(t) + r(t)> . PW9 (22) 

so that the time path of p(t) can be calculated from the observations of P(t) 
and the estimates of m(t) and y(t). 
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C. The Model When Death and X(t) are Observed 

Suppose now that X(t) is observed. Assume that the distribution of the 
variable Y(0) where individual values are unobserved, conditional on the 
observed X(O), is Gaussian and that the force of mortality is a quadratic 
function of Y(t): 

44 Y(t), xl> = k&7 xl) + WI Pu,k xl> + Y’(t) El*@, xl). 

In addition, restrict the stochastic differential equations as follows: 

(23 ). 

W) = [a,(4 Xf,) + a,@, Xk) Y(t)] dt + b,(t, Xf,) dW,(t) 

+ b,(f, m dW*(t) (24) 

and 

dX(t) = [A&, Xi) + A l(t, X;) Y(t)] dt + B(t, X:) dW,(t). (25) 

Note that (24) and (25) are more general than (9) and (10). First, the coef- 
ficients may depend on the entire history of Xb: this represents the extension 
to the non-Markovian case. Second, the first equation now depends on both 
Wiener processes (i.e., W, and W,). This is a straightforward generalization 
that may be useful in estimation. 

As outlined in Appendix B, it follows that the distribution of Y(t) 
conditional on X(t) and T > t is Gaussian. Furthermore, the mean and 
variance of this conditional distribution are given by 

dm(t) = la& xb> + a,(& xb) m(t) - Y@)c~,(& Xb) - r(t) 
x m(t) /4, xi,)1 dt 
+ 

[ 
b,(t, Xb> W, xi,> + A 4, x8 r(t) 

B2(4 x3 1 
x [dJW) - (A,(& $1 + A,(& X;> m(f)> dfl. (26) 

and 

W) -=2 a,(t,XG)- 
[ 

b&x’,) 
dt BO, xi> 

A I(& x3 -P&m YW 
I 

x ~(0 + b:(t, X;) - 
A :<f, X!d 
B’(t, X;) I’(‘)’ 

(27) 

These two equations are similar to the previous expressions for the mean and 
variance in (18) and (19) except for the final terms (and terms arising from 
the inclusion of W, in (24)). These final terms can be viewed as corrections 
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introduced because information is available about Xb. The terms will look 
familiar to students of continuous-time Kalman filters. Indeed, one way of 
interpreting (26) and (27) is that they generalize the usual Kalman filter 
equations to include the force of mortality. 

The observed force of mortality can be related to the observed variables 
and the distribution of the unobservable variables by 

D. Discrete Time Observations 

In most empirical studies, individual values on variables are not monitored 
continuously but are observed from time to time. This section describes how 
the formulas developed above may be applied to the case of discrete time 
observations. Assume that the unobserved process is governed by the 
stochastic differential equation 

dY(t) = (a&,X) + a,(& X) Y(t)> dt + b(t, X) dW,, (29) 

where the process X is now the sequence of (t,, X,), n > 0. That is, there is a 
sequence of observation times t t 1, 2 ,..., t,, and a sequence of measurements 
x, 3 x2 ,***, X,,. The X, sequence can be described by the generating procedure 

X,=A(T,,X)Y(T,)+D(T,,X)~~, (30) 

where A(t, X) and D(t, X) (as well as a,(& X), a,(f, X), b(t, X)) are known 
functions of t.and the entire history of the process X up to but not including 
time t and where c!+?~ is a sequence of Gaussian-distributed random variables 
with mean 0 and variance 1. As before, we assume that the force of mortality 
may be represented by 

&X Y(f)) =,&(6X) + Y(~>P,l(~~ -9 + y’(t)P2(fJ), (31) 

where the P,, and ,u2 are nonnegative, measurable functions of t and the entire 
history of X up to but not including time t. 

By generalizing the method of proof used in Yashin (1980) it can be 
shown that the conditional distribution of Y(t) given I(t) = 1 (i.e., T > t) and 
X is Gaussian. The mean and variance of this distribution are 

44 = 49 + 1’ [a,@, X> + a,@, X> m(s) - y(s)~~(s,X) 0 
- Y(S) m(s) P~(s, XII ds + x A Cl,, , XI I@ 2(h,y XI Y(&) t,-zt 
+D’(t,,X))-’ ’ (X,--A(r,,X)m(t,)). (32) 
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and 

y(t) = ‘J(0) + 1’ [2a,(s, X) y(s) + b2(s*X) - 2!4s,m ?wl ds 
0 

+ x y’(~,>~2(f,,~)[~2(~,,~)Y(~n)+~2(~n,~)1~’. (33) tnit 

These equations may be viewed as generalizations of both continuous time 
and discrete time Kalman filter algorithms. 

IV. APPLICATIONS 

A. General Observations 

To use the model empirically, it is necessary to produce estimates of the 
values of the coefficients in the stochastic differential equations (25) and 
either (24) or (29). Although discussion of the details of statistical 
estimation is beyond the scope of this paper, we note that if observations are 
available on a population of individuals across time and over age, then the 
coefficients of these equations are estimable given the appropriate identifying 
constraints. Alternatively, previous theoretical and empirical research may 
suggest values or functional forms for the coefficients that will facilitate 
estimation. In particular, there have been a number of longitudinal studies of 
aging processes (e.g., the lirst and second Duke longitudinal studies of 
normative aging) which can provide estimates of the age rate of decline of a 
broad range of physiological parameters. These estimates could be employed 
directly in the equations. 

Given the coefficients, (26) and (27) or (32) and (33) permit estimation of 
the mean and variance of the conditional distribution of the unobservable 
variable. Equation(28) can then be used as the basis for estimating the force 
of mortality for an individual with any specified characteristics and at any 
age. As noted earlier, this estimation might require specifying certain 
functional forms for ,u,, , ,u, , and ,uz. Alternatively, it might be assumed that 
p,, and ,ui are equal to zero, in which case the values of ,u, over time can be 
immediately calculated from the observations of p over time. 

B. Unobserved Risk Factors 

The model may be useful in a variety of applications where data are 
available over time concerning some variables, but there is reason to believe 
that other significant variables are unobserved. In some cases enough 
theoretical or empirical knowledge may be available about these unobserved 
variables so that the initial probability distributions and stochastic 
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differential equations can be specified with some confidence. In such cases 
estimation of the evolution of the unobserved variables may be of 
considerable interest. In other cases, it may be suspected that some 
unmeasured factor such as “frailty” is an important source of heterogeneity 
in the population. Such a variable may have to be introduced by imposing 
constraints in the model. For instance, Vaupel et al. (1979) assume that an 
individual’s frailty is constant over age and that the distribution of frailty 
among individuals follows a specific distributional form. In some studies the 
unobserved variable may not be of direct interest: it may be viewed as a 
nuisance parameter important only because it obscures the actual 
relationships among the variables of particular interest. 

For example, consider a longitudinal analysis of chronic illness based on 
the kind of information collected, say, in the Framingham study. Manton et 
al. (1979) and Woodbury et al. (1979, 1981) present analyses of this sort, 
based on the insights of the Woodbury-Manton model. In their analyses, the 
change in coronary heart disease risk factors in the study population was 
modeled as an autoregressive process adjusted for the effects of systematic 
mortality selection. It seems likely the population was subject to risk factors 
not fully represented by the available measurements of systolic and diastolic 
blood pressure, serum cholesterol, uric acid, etc. The stochastic differential 
equations presented here and the Kalman tilter equations generalized to 
represent the effects of mortality selection offer a range of strategies for (a) 
estimating the impact of unobserved risk factors, and (b) identifying the 
“true” effects of observed risk variables. 

C. Partially Overlapping Studies 

Sometimes longitudinal data are available from several related studies 
such that, though some variables may be observed in all studies, other 
variables are observed in only some studies. Having a set of such studies can 
greatly facilitate the estimation of the model parameters. For instance, the 
Woodbury-Manton model has served as the basis for analyses of coronary 
heart disease risks not only in the Framingham study population, but also in 
the populations observed in the Duke Longitudinal Study of Aging (Manton 
and Woodbury, 1983), and in an unpublished Kaunas, Lithuania, study. 
Partially overlapping sets of observed variables were available for these three 
analyses. The Duke study differed from the Framingham study in that uric 
acid serum concentrations were not observed, but scores were taken on the 
Wechsler Adult Intelligence Scale. In the Kaunas data set, intelligence test 
data were not available, but certain other laboratory measurements were 
made. 

To compare and synthesize such imperfectly coordinated data sets, it may 
be useful to employ a model that includes all of the variables observed in 
any of the studies. The model could then be applied to the different studies 
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by specifying which variables were observed and which were not observed. 
The effects of all of the variables across all of the studies could then be 
compared. Furthermore, process parameters estimated for an “observable” in 
one study could be applied to another study where that variable was “unob- 
served.” 

D. Measurement Errors and Indirect Measurements 

Most variables can only measured with some error: sometimes the noise 
can be severe. In other cases, a variable of prime interest cannot be observed 
directly, but a correlated variable can be monitored and used as an index. 
For instance, the elasticity of blood vessels may be important in coronary 
heart disease processes, but observations may only be available on blood 
pressure. Indeed, most of the measurements available in studies of aging 
processes may only indirectly reflect the underlying physiological state 
variables. 

As noted above, the formulas presented for estimating the mean and 
variance of the unobserved variables can be interpreted as extensions of the 
Kalman filter equations developed to detect signals in noisy measurements. 
Thus, the Kalman filter type equations presented here can be useful in iden- 
tifying the true variables of the process, in the face of measurement error or 
indirect assessment, from studies with multiple measurements taken over 
time. 

E. Assumptions 

Efforts to apply the model will, of course, be dependent on the 
reasonableness of model assumptions for a specific application. In this 
section, we discuss assumptions and some strategies for extending the 
model’s applicability to certain situations. 

1. Gaussian distribution. The distribution of the unobserved variables 
conditional on the observed variables at time zero is assumed to be 
Gaussian. Furthermore, the model implies that this conditional distribution 
among survivors will be Gaussian at any time t. For some variables this may 
not be true, but a transform of a variable may be more or less Guassian 
distributed. For example, Manton and Woodbury (1979) use the logarithms 
of pulse pressure, diastolic blood pressure, and serum cholesterol level. 
Consideration of the reasonableness of this assumption must be based on 
available theoretical insight about the dynamics of the unobserved variable 
(see Manton and Stallard, 1981). 

2. Quadratic hazard. The force of mortality is assumed to be a 
quadratic function of the unobserved variables. This assumption is closely 
tied to the Gaussian assumption, as the following example illustrates. Let 
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~(t, Y) be the force of mortality at time t for an individual with unobserved 
characteristic Y. Suppose 

M, Y) = Y”PW, (34) 

where p(t) might be interpreted as the force of mortality for some standard 
individual for whom Y equals one. Now consider an alternative formulation: 

,a z) = w(t), (35) 

where z is a characteristic that equals Y2. This formulation is the one used in 
the “frailty” model proposed by Vaupel et al. (1979) and applied in studies 
by Manton et al. (1981) and Horiuchi and Coale (1983). Finally, consider 
the formulation where 

dt, x) = ,4t) ex, (36) 

where x is a characteristic that equals the logarithm of Y2. This approach 
has been adopted in a variety of studies, including Heckman and Singer 
(1982). Given the appropriate probability distributions, all three 
formulations can be made equivalent. For instance, the first formulation with 
Y following a Gaussian distribution with mean zero and variance one is 
equivalent to the second formulation with z following a Gamma distribution 
with scale parameter one and shape parameter 0.5. 

In some respects the second formulation, involving z, is the most 
transparent since z can be interpreted as measuring the relative risk of 
mortality for an individual compared to some “standard” individual. Since Y 
does not have to be a single variable, but can be a vector of variables, it is 
possible to consider z defined by * 

z = YTaY, (37) 

where a is a matrix. In this case, z will have a distribution known as a 
quadratic form of the Gaussian distribution. Such quadratic forms are very 
flexible and can take on a variety of shapes. Thus, the assumption that each 
variable in the unobserved set of variables Y is Gaussian distributed can be 
readily generalized to the case where the unobserved variables can, in effect, 
follow a quadratic form of the Gaussian distribution. Biologically the 
quadratic form of the hazard is reasonable for physiological parameters 
subject to homeostatic forces: variables that are essential to physiological 
functioning should have a viable interior range and nonviable exterior ranges 
where homeostasis is thought to break down. 

3. D@rentialprocesses. Both the observed and unobserved variables in 
our model are assumed to be continuous and governed by a differential 

hS3,27’2-5 
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process. In a variety of studies this may be satisfactory. In some instances, 
however, categorical variables that are either constant over time or that 
follow some jumping process may be important. Constant categorical 
variables, like sex, race, or national origin, can be handled by stratifying the 
data. Discrete-state variables that jump from one state to another pose a 
much more difficult problem. Examples of such variables that may be 
relevant to studies of aging and mortality include marital status, type of 
employment, place of residence, and such factors as whether an individual is 
hospitalized or in a nursing home, has had a stroke or a heart attack, has 
quit smoking, and so on. It is possible to extend the models presented here to 
the more general case where some of the observed or unobserved variables 
follow a jumping process as opposed to a differential process. 

V. DISCUSSION 

In both empirical and theoretical studies of human aging and mortality, 
the need for modeling individual differences in aging processes has been 
repeatedly demonstrated (e.g., Strehler, 1977; Economos, 1982; Manton and 
Woodbury, 1983). Unfortunately, there are many instances where those 
differences are due to unobserved variables. Indeed, the nature of the sources 
of these differences, such as differences in the age-related loss of functional 
“vitality” or the impact on longevity of genetic factors, suggest that 
difficulties in measurement and conceptualization will dictate that such 
individual properties will remain at least partially hidden for a long time. 
Nonetheless, successfully coping with the effects on aging processes of such 
latent heterogeneity will be a necessary component of adequate models of 
human aging and mortality. For example, Economos (1982) has argued for 
the necessity of joining “Simm’s idea of statistically distributed individual 
aging rates” with Gompertz’s concept of “accelerated decline of vitality” in 
order to relate the observed pattern of rates of aging with the observed 
pattern of the rates of dying. Indeed, the logic by which these concepts are 
related is that of a diffusion process where temporary sojourns above a 
threshold value cause the rate of increase in mortality rates to be more rapid 
than the rate of decline of physiological vitality. 

The model we have presented provides a flexible strategy for assessing the 
impact of such heterogeneity on human aging and mortality processes. In 
particular, it generalizes the notion of the effects of heterogeneity from that 
of a fixed distribution to the effects of an unobserved process. Thus, it can 
lead to an empirical strategy for assessing both functional change and 
mortality which is rich enough to represent the complexity of current 
conceptual models of human aging and mortality. 

We presented our model as a development of the Woodbury-Manton 
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model of aging and mortality published by this journal. Our model can also 
be viewed as having roots in analyses of failure processes done by numerous 
researchers in a variety of disciplines. Often analysts working in the various 
fields of statistics (e.g., Lundberg, 1940), labor economics (e.g., Blumen, 
Kogen, and McCarthy, 1955), sociology (e.g., Singer and Spilerman, 1974), 
reliability engineering (e.g., Harris and Singpurwalla, 1968), demography 
(e.g., Sheps and Menken, 1973), and health policy analysis (e.g., Shepard 
and Zeckhauser, 1977), were only partially aware of the mutual relevance of 
their methodological research. 

The thrust of much of this diverse body of research is how to cope with 
the effects of population heterogeneity on the parameters of the process of 
interest. The most common conceptualization of the problem is that there is 
some unobserved variable that influences the likelihood that an individual 
will “die” at some particular time. Sometimes this variable is of direct 
interest; in other cases, it is essentially a nuisance. When it is of direct 
interest, methods to estimate parameters of its distribution may be important. 
But whether it is of interest or just a nuisance, one must be concerned with 
its effects in order to uncover the underlying relationship between the force 
of “mortality” and the variables of interest. In nearly all the previous work 
on heterogeneity, the value of the unobserved variable is assumed to be 
constant over time for each individual. The more general approach developed 
in this paper may thus be useful in a variety of applications where unob- 
served variables change over time. 

APPENDIX 

A. Proof of the Generalized Kolmogorov-Fokker-Planck Equation 

Consider the random process (Y X X) defined on probability space 
(Q, H, P) by the relations 

dY(t) = a(t, Y(t),&) dt + b(t, Y(t), X6) dW,(t) 

and 

dX(t) = A(& Y(t), Xf,) dt + B(t, X;) dW,(t), 

where W,(t) and W2(t) are independent Wiener processes that are also inde- 
pendent of the initial conditions Y(0) and X(0). Coefficients a, A, and b are 
measurable functions of t, Y(t), and the entire history of the process X from 
time 0 to time t. B is a positive, measurble function of t and the entire 
history of the process X. I(t) is a two-state (1,0) continuous time process 
with I(0) = 1, with the transition intensity function p(t, Y(t), Xb), which is a 
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measurable function of f, Y(t), and the entire history of the process X up to 
time t. 

The proof of the generalized Kolmogorov-Fokker-Planck equation for the 
density of the unobserved variable conditional on I(t) = 1 and X6 is based on 
the formula for the conditional mathematical expectation of an arbitrary, 
bounded, doubly differentiable function F(Y(t)). This formula may be 
derived as a consequence of the general estimation approach based on 
semimartingale theory (Jacod, 1979; Bremaud, 1980), as well as the methods 
of filtration of random processes with jumping components (Yashin, 1969) 
and the analogous methods given in Liptser and Shirjaev (1977). Here we 
sketch the proof. 

Using Bayes’ formula, one can write 

E(F(Y(l)) / I(t) = 1, x;> = E’(W(f)) * W)), 643) 

where y(t) is the likelihood ratio given by 

Y(t)= exp 
! 
1 

t A (u, Y(u), Xtf) -X(24, X,u) - 

B(u, xi> 
dW(u) 

0 

where 

W) 

is the Wiener process with respect to the family of a-algebras generated by 
the process X, and where 

A@, X) = E(A (2, Y(f), Xi) 11(t) = 1) xg> 646) 

and 

,Lqt, X) = E(u(l, Y(t), X6> I I(t) = 1, XJ. 647) 

The symbol E’ means the operation of mathematical expectation with 
respect to the marginal probability measure concentrated on the component 
W, of the Wiener process. 
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Using Ito’s differential rule (Liptser and Shirjaev, 1977), one can readily 
transform (A4) into the differential relationship 

d!P(t) = Y(f) [ 
A (h y(t), xl) - a x-J> dE(t) 

B(t, X6> I 
- @(t, Y(t), X;) - ,Z(t, Xi)) dt 

1 
. W3) 

In order to calculate (A3), represent the product of F(Y(t)) and !P(t) by 
using Ito’s differential rule. This yields 

F( Y(t)) Y(t) = F(Y(0)) Y(0) + i’ I;‘( Y(U)) Y(U) a@, Y(U), Xi) du 
'0 

- cU(u, Y(u), G) - P(u, X,“)) du] 

+ jorF'(VN y(u) W, Y(u), x;> dW,(u) 

-+ jf F”(Y(u)) Y(u) b*(u, Y(u),X;)du, 649) 
0 

where F’ and F” are the first and second order derivatives of F with respect 
to Y. 

Taking the mathematical expectation E’ of both sides of (A9), we get 

E(F( Y(t)> I Z(t) = 1, X6) 

= E(F(Y(O)) ) Z(0) = LX,) + i’E’(F’(Y(u)) a@, Y(u), Xu,) P(u)) du 
0 

- $ 
i 

‘E’(F”(Y(u)) b2(u, Y(u),Xff) P(u)) du 
0 

+ J’I E’(F(Y(u))P@, Xi> !f’@)) du 
0 

A(u9 ‘(‘>, %) --h %) 
Bh Xi) 

(AlO) 
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By again using Bayes’ formula one can show 

w(Y(t)) I z(t) = 1, xl> 

= W(W)) I m = 1, X0) 

+ j; E(F’( Y(u)) * a@, Y(u), xtf) 1 Z(u) = 1, Xtf) du 

- $ I f E(F”( Y(u)) b*(U, Y(u), xtf) ) Z(u) = 1) Xtf) du 
0 

(All) 

+p(F(Y(u))@7(u,G) -P(& Y(u),Xlf)) I I(u) = 13-G) du 
0 

A@, Y(u), x3 - 4% xtf) 
Btu, Xtf) 

Z(u) = 1,x; &T(u). 

Using the arbitrary doubly differentiable function F(Y) such that 

F(f -) = F’(f -) = FN(f -) = 0 (A 12) 

and rewriting (Al 1) in terms of the integral with respect to the conditional 
density 

(A13) 

one can finally get the conditional Kolmogorov-Fokker-Planck equation 
given in the main text. 

B. Proof that the Conditional Distribution is Gaussian 

In order to prove that the conditional density f,(y) is Gaussian, some 
additional assumptions are needed. We assume that the coefficients a, A, and 
p have the following forms: 

a(u, Y(u), Xh) = a,@, A$> + a,(24 X6) Y(u) 

A(& Y(u), Xfj) = A&, XJ + A I(24 $1 Y(u) (Bl) 

4% Y(u), XJ = P&4 XJ f P,(U, X6) Y(u) + P,@, xl> y*w, 

which are functions of time and of the entire past of the process X from time 
0 up to time t. We assume also the initial condition that Y(0) is Gaussian 
distributed, conditional on Z(0) = 1 and Xi, and that F(Y(t)) has the special 
form 

F(Y(t)) = eiaYcf). P2) 
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Define !Yt by 

!ly = E(e’“Y(‘) 1 z(t) = 1, X6). 

For this special case (Al 1) may be written as 

Y~=Yo+ia~~ao(u,Y(u))Y~du+a~fY~a,(u,X~)du 
0 0 

033) 

a2 f -- 2 j- 
0 

!q,b2(u, xlf) du + j’p,(u,X3 yu:, du 
0 

- i ‘,u,(u,Xi) Y; du I 0 

where Y’ and Y” denote the first and second derivatives of Y with respect to 
a and 

m(t) = E( Y(t) 1 z(t) = 1, X’,). W 

Denote by m, and y. the mean and variance of the conditional distribution of 
Y,. Then the function Y. can be written as 

Y. = exp{iam, - fa2yo}. (‘36) 

Given this particular form and the equation for Ytu,, we seek Y( in the similar 
form 

Yt = exp{ iam - f a’y(t)}, (B7) 

where m, and yt satisfy the following stochastic differential equations 

dm(t) = cl(t) dt + d,(t) dp(t) 

dy(t) = q(t) dt + d2(t) d@t). 
P-38) 

The coefficients in (B8) can be found from (Bl) and (B7). Using the 
equalities 

Yh=iaYYz,=-a2Y, 

Y; = -$ Ya2, 
(B9) 
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and comparing the stochastic differential of Yt represented in terms of m(t) 
and y(t) with the right-hand side of (B4), we have 

A (4 -9 d,(t) = _ B(t, x) YWY WI = 0 

A (t, X) c,(t) = b2(t, m - 2a,(t, X) Y(t) -At, x> Y’(f) - ___ B(f, X> Y 2(t). 

@lOI 

It remains to be shown that the equation for yr has a unique solution. 
Proof of this follows easily from the approach suggested by Liptser and 
Shirjaev (1977). Furthermore, generalization to the case described in 
Section III.C-i.e., when noise in X and Y is correlated-also follows easily 
from Liptser and Shirjaev. 
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