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Abstract 

Several alternative mortality models fit Swedish old-age mortality data equally well. The 
models build on two different concepts of the heterogeneity of individuals in a population. 
The first concept concerns fixed, genetic differences among individuals in their risk of death. 
The second concept involves acquired susceptibility to death due to physiological changes and 
environmental influences. We show that alternative mortality models based on either of these 
two concepts or some mix of them lead to the same parametric form of observed age-specific 
death rates. We discuss this duality property of mortality processes and show that even when 
a mortality model fits the data, the concepts used to construct the model may not be correct. 
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1. Introduction 

Human death rates increase exponentially with age from about age 30-35 to 
about age 80-85. At more advanced ages, however, the rate of  increase slows and 
the trajectory of mortality falls off from a Gompertz curve [1,2]. Two large studies 
of  fruit fly mortality found a similar deceleration of death rates [3,4]. In this article, 
we compare several alternative mortality models that can account for the observed 
pattern. The models build on two different concepts of  the heterogeneity of  in- 
dividuals in a population. The first concept concerns fixed, genetic differences 
among individuals in their risk of  death. The second concept involves acquired sus- 
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ceptibility to death due to physiological changes and environmental influences. Sur- 
prisingly, it turns out that alternative mortality models based on either of these two 
concepts or on some mix of them can lead to the same parametric form of observed 
age-specific death rates. This duality implies that it is impossible to determine the 
validity or relative importance of the two concepts on the basis of mortality data 
alone. 

2. Genetic differences and observed mortality 

In 1960, Strehler and Mildvan [5] showed that heterogeneity among individuals 
can produce an observed mortality pattern in a population that deviates from the 
underlying age-trajectory of mortality for individuals. One possibility is that in- 
dividuals in a cohort have different chances of survival because of fixed, innate dif- 
ferences in frailty. Following Beard [6] and Vaupel, Manton and Stallard [7], let the 
force of mortality (or hazard of death) of individuals of frailty Z at age x be given by: 

# ( x , Z ) = Z a e  bx + c (1) 

where a, b, and c are parameters to be estimated. If frailty Z is a gamma distributed 
random variable with mean 1 and variance o 2, then average frailty among survivors 
at age x is given by: 

1 
2(x) = (2} 

1 + o 2 a  (e b x -  1) 
b 

and observed mortality g(x) in the population is given by: 

ae  bx 

~(x) = + c (3) 
1 + 0 2a~ (e b x -  1) 

b 

The model in Eqs. 1 and 3 might be called a gamma-Makeham model. It corresponds 
to the case of fixed continuously distributed frailty. The observed mortality (3) cor- 
responds to a logistic mortality curve. 

It has been shown [8,9] that this model fits mortality data significantly better than 
the traditionally used Gompertz-Makeham mortality model, where 

#(X)  = ae  bx + c (4) 

We confirmed this finding by fitting the gamma-Makeham and the Gompertz- 
Makeham models to Swedish data using the maximum likelihood method [10]. The 
likelihood ratio test indicates that for every male and female cohort born from 1850 
to 1879, the gamma-Makeham model gives the better fit to the data at the signifi- 
cance level of 0.01. 



A.L Yashin et al./Mech. Ageing Dev. 74 (1994) 1-14 3 

Fig. la,b plots the empirical, Gompertz-Makeham and gamma-Makeham death 
rates starting from age 50 for illustrative 1861 Swedish female and male cohorts. 
Graphs for other cohorts look similar. 

The gamma-Makeham model is based on the assumption that differences in sus- 
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Fig. I. Annual probability of death q(x) by age x for females (a) and males (b) born in Sweden in 1861. 
The solid line gives the observed mortality trajectory, the heavy dashed line the gamma-Makeham fit, and 

the light dashed line the Gompertz-Makeham fit. 
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ceptibility to death are genetically predetermined and are characterized by frailty Z. 
Individuals with the same frailty have the same survival chances: death rates change 
deterministically with age in accordance with the underlying hazard function. A con- 
ceptual weakness of  this model is that it does not explicitly include the random 
changes in individual frailty that occur due to environmental influences or stochastic 
processes of  physical deterioration. These components are hidden in the underlying 
hazard function in some implicit averaged form. As an alternative to this fixed frailty 
model, a model of  randomly changing frailty and stochastic aging can be considered. 

3.  E f f e c t s  o f  s t o c h a s t i c  a g i n g  

Assume that at age x an individual can be in one of states 0 ..... n corresponding 
to n + 1 levels of  frailty. These states, for example, may be associated with different 
health states. In any state i < n, a person faces a hazard of death and a hazard of 
moving to state i + 1 where the chances of  survival are lower. Cohort  mortality and 
survival functions can be analytically calculated if this general model is restricted 
along the lines suggested by Le Bras [11] and modified by Gavrilov and Gavrilova 
[12], as described below. 

3.1. Equal chances -- different lives 
Assume that all newborn individuals in a cohort start from the state 0. This means 

that everybody in the cohort has the same chances of  survival when they are 0 years 
old. Let ~0 and #0 be the transition rates from state 0 to state 1 and to death, 
respectively. For the ith state let these transition rates be ~ + i~, and #0 + i#. Note 
that these hazards do not depend on age, but that they do increase from state to next 
state. Denote by Pi(x) the probability that an individual age x will be found in the 
ith state. As shown in [111: 

Po(x) = Po(O)e -(x° + ~,o)x 

and 

P i ( x  ) P°(x) [ h-)~e-(X+~')~' ]i l~l ( ~ -  ) - + (k  - 1) , i > 0 (6)  
i! ~ + #  = 

The number of individuals alive at age x is given by the survival function Sn(x): 

S,(x) = ~ P~(x) (7) 
i=0 

Now assume that the model has an infinite number of  states. As the number of 
states tends to infinity the survival function Sn(x) tends to the limit S(x): 

~0 

S(x)=e-(X°+~'°)x( l~ + X+#Xe -(x + ~,)x ) ~ -  (8) 
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Taking the logarithmic derivative of S(x) we get the formula for observed mor- 
tality g(x): 

zh0[l - e -  (x + ~)x  l 
g(x) = Z0 + (9) /~ + ),e- (x + ~)x 

Fig. 2a,b shows how parameters of the Le Bras model for female and male 
Swedish cohorts change with the year of birth of the cohort. Parameters were 
estimated by the maximum likelihood method. The parameter estimates are clearly 
correlated, some pairs positively, others negatively. A negative correlation between 
the parameters of the Gompertz model (when ~t(x)= ae bx) was highlighted by 
Strehler and Mildvan [5]. Riggs [13,14] used this property for analyzing mortality 
data via reparametrized Gompertz curves. Gavrilov and Gavrilova [12] found a 
similar negative correlation in the Gompertz-Makeham model. The negative correla- 
tion between ~ and t~, and between X and t~ in Le Bras model is illustrated by Fig. 
3. The nature and properties of these correlations merit further attention., 

When # << X, then ~(x) may be approximated by 

~.(x)= (/~o_ tzho'~ + #ho e(X+u) x (10) 
\ x /  X 

which is equivalent to the Gompertz-Makeham mortality model. The general four- 
parameter model can accommodate a variety of mortality trajectories, including tra- 
jectories where mortality rates level off at advanced ages. 

3.2. Average biological age 
The various states in the Le Bras model of mortality can be associated with bio- 

logical age. This interpretation is useful because it permits analysis of cohort differ- 
ences, male-female differences, and cross-species differences in terms of health-state 
distributions among survivors. Such a perspective might also be useful in the analysis 
of prehistorical demographic data when chronological age at death can not be 
measured directly but must be estimated from the physical condition of skeletal re- 
mains. Expressions 5 and 6 allow us to calculate the average biological age 
(i.e. health state i) among survivors T(x) = E (il T > x). Because 

• Pi(x)(#o + il~) 
~(x)= i--0 

~ Pi(x) 
i = 0  

it follows that 

g(x) = tZo +/"(x)/z (11) 
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Fig. 2. (a) Values of the Le Bras model parameters h o A,/~o B, # C, and X D for Swedish females born 
in the period 1850-1879. (b) Values of the Le Bras model parameters X o A, ~-o B, /~ C, and h D for 

Swedish males born in the period 1850-1879. 



A.L Yashin et al./Mech. Ageing Dev. 74 (1994) 1-14 7 

A) 

0 0 0 

0 0 0 0 0 

0 0 0 0 0 V o ~ O ~ X ~ O -  ° 

O.O04S O.OOSO O.O05S O.OOaO O.O06S 0,0070 0.0075 0.0~00.aOaS 

IZo 

c) 

~ o 

o Oo 

o o 

o o o o 

:::L ~ o  

° o  

o 0.004 o.oos o.ooa 0.007 o.ooa 0.009 

B) 

D) 

~ o 
. ?o 

~ o 

O . . . . . . . . . .  

@ 

o o o  

o o  o o o 

01~a  

o 0.108 0.112 0.~16 0.120 0,124 0.12a 0 1 3 2  0,q36 

Fig. 3. Negative correlations in fits of  Le Bras' model between/~ and ~ for females A and males C and 
between/~ and X for females B and males D. Observed values for Swedish female and male cohorts born 

in the period 1850-1879 are given by circles; the line gives the least squares regression. 

and hence 

T(x) - g(x) -/x0 (12) 
/,t 

A s x - -  ~ , g ( t ) - -  /z 0+h0,  so 

T(oo) -- ~0 (13) 

Biological age approaches this limiting value because there is eventually a balance 
between mortality selection on the one hand and debilitation on the other. Survivors 
cannot have too high a biological age and still be alive. Fig. 4 presents gr, ..is of  the 
limiting average biological age among survivors for Swedish male and female 
cohorts born in the period 1850-1879. It is interesting to observe that the limiting 
average biological age declines with year of birth, i.e. survivors at advanced ages in 
the more recent cohorts are on average healthier. Further investigation from this 
perspective may provide another view on the possible compression of  morbidity [15]. 

Note that 7-(x) is a measure of the average level of frailty among survivors in the 
Le Bras model of stochastic aging. This function, however, is different from the aver- 
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Fig. 4. Limiting average biological age ~o0) for females ( - - - )  and males ( ) born in Sweden in the 
period 1850-1879. 

age frailty among survivors calculated in the case of  the fixed frailty model in Eq. 
2. Both frailty concepts capture an aspect of  reality but in very different ways. It is 
unclear how important either or both will prove to be in understanding patterns of  
mortality and aging. 

3.3. The  balance  be tween  se lec t ion  a n d  deb i l i ta t ion  

The observed mortality represented by 9 and 1 1 results from the influence of two 
important processes - -  stochastic aging and debilitation developing on the individu- 
al level and mortality selection developing on the population level. The mutual, bal- 
ancing influence of  these processes generates the distribution of surviving 
individuals. This distribution is given by the survival proportions 7ri(x). By defini- 
tion these proportions can be calculated as 

e i ( x )  
ri(X ) - -  , i = 0,1,2 .... 

S(x) 

After substitution of 7, 8 and 14 into this formula we have 

Xo 
' ) ~r,(x) = ~ V(x) / (1 - V(x)) x + (k - 1) 

k = l  

(14) 
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where 

X - he -(x + ~)x 
V(x) - (15) 

X + #  

X # 
S i n c e  V(x) - -  and  1 - V(x) - - ,  we h a v e  for  71"i(oo ) 

X + #  X + #  

xo 

xi(°°) = ~.I + (k - 1) 
k = l  

(16) 

It is easy to check that ~_~ a'j (oo) = 1 
j=O 

Note that the mean of the xt(oo)'s is r(oo). Hence, Fig. 4 indicates that for most 
birth cohorts the limiting distribution of ~r for females is, on average, to the left of 
the distribution for males. Fig. 5 shows the entire distribution of ri(oo) for males 
and females for an illustrative birth cohort, the cohort of 1868. It indicates that the 
female distribution is shifted to the left. This shift has an interesting interpretation. 
If i is taken as a measure of  biological age, then surviving females at advanced ages 
are biologically younger (healthier) than surviving males. Since the female distribu- 
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tion clearly lies to the left of the male distribution, it can also be concluded that fe- 
males who die at advanced ages die at a younger biological age than males. Females 
tend to outlive males and to die at a higher chronological age, but females may die 
at a younger biological age. Looked at from another point of view, the model sug- 
gests that the aging process for females, i.e. the movement to worse states of health, 
develops more slowly than for males. 

3.4. Does it really matter i f  frailty is genetic or acquired? 
How important are genetic factors in determining mortality? How important are 

environmental influences and internal processes of aging? To capture genetic effects, 
fixed frailty models (like the gamma-Makeham model) have been developed. The in- 
fluence of environmental factors and a randomly developing health deterioration 
process can be studied with the help of changing frailty or acquired heterogeneity 
models (like the Le Bras model). It turns out that mortality data alone does not per- 
mit a test of which kind of effect is more important. More exactly, the following 
statement holds true: 
Proposition 1. Using survival data one can not distinguish between the Le Bras 
model of randomly changing frailty (9) and the gamma-Makeham model of fixed 
frailty (3). 
Proof. Model 9 can be rewritten as 

X0(X + t~) 
~(x) = ~0 +/zo k + #e (x+ u)x (17) 

Let us represent (3) in a form similar to (17). After simple transformations we get 

b 
- -  - -  a 

b °2 
#(x) = ~ + c - (18) 

o ~ 
( 1 - ° 2 ~ )  + °2 a b ebx 

Comparing the coefficients in 17 and 18 and solving the system of respective 
algebraic equations we get for k, ~ , /~ ,  t~0: 

g o = a + c  

b 
Xo=7 -a 
X = b - a2a 

Ix = a2a 

(19) 

Solving these equations with respect to a, b, c and a 2, we get 
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x0 a = ~-/z 

b = X + t ~  
(20) 

C = p , 0 - - -  
X 

02 X 
x0 

Relations 19 and 20 establish the one-to-one correspondence between the parame- 
ters of Le Bras and gamma-Makeham mortality models. Thus, if one model gives 
a good fit to the data, the other model gives an equally good fit. This situation 
creates an important methodological problem: how should the results of statistical 
analysis be interpreted? 

3.5. Compromise s o l u t i o n ? -  one more  problem 
One might expect that the truth lies in a compromise solution: a cohort is 

heterogeneous from the very beginning and then it undergoes a stochastic process 
of aging. So a superior model would allow for an initial distribution with respect to 
health states with further stochastic evolution starting from each of these states. For 
example, one could take the proportions ~'i(x0), i = 0,1 .... for some x0 as an initial 
distribution of frailty for newborn individuals and allow for stochastic evolution in 
accordance with Le Bras' model. It is clear from this construction that the observed 
mortality rate ti(x) at age x for this population coincides with if(x0 + x). It turns out 
that parametric description of this mortality curve is the same as the initial Le Bras 
model. More exactly the following statement holds true: 
Proposition 2. Using survival data, the stochastic aging model in which all in- 
dividuals in a cohort start from the '0' state is indistinguishable from a 
heterogeneous stochastic aging model in which individuals in the cohort start from 
different states with the initial distribution/~i(O) defined as 

e i ( o )  = *ri(Xo) 

where the ~'i(x) are defined by 14 for arbitrary x0. 
Proof. Note that observed mortality in the model 
represented in the form 

of stochastic aging can be 

g(x) = ~o V 1 + oLe & - f(x;ot,fl,co,~/) (21) 

where o~ = ho + #0, ,~ - +,h, 3', = ~ tt some parameters c~, fl'~, h0 ~-,c~ = - - .  It is enough to show that for 
6o , ' r  : X 

f ( x o  + x ,o t ' , f l ' , co ' ,7 ' )  = f(x,ot,fl,co,7) (22) 
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It is clear from 21 that 22 will be satisfied, i f /3 '  = 13, co' = co, 7 '  = % and a '  = 
ote-BX O. 

3.6. Which state do we start with? 
Another possible modification of the Le Bras model deals with changes of  the ini- 

tial state. Note that the structure of  this model is such that if all individuals in the 
cohort start from the j th state, the parametric structure of  the model remains the 

same with natural substitution of  k0 and t~0 by ko(j) = k0 + j k  and t~0(J) =/~0 + J# 
i.e. 

(x) = t~oU) + 
#ko(j)[1 - e-  Ix + u)x I 

# + ke-(X + u)x 

Thus from the statistical point of  view, it is impossible to say whether the cohort 
starts from state '0 '  or from state ' j ' .  

3.7. Mortality in sovereign populations 
Assume that in the compromise model (i.e. in the model with initial heterogeneity 

and subsequent stochastic aging), we select a subpopulation which at time zero is 
in state i. Starting from this time, we are interested in the future of  only this sub- 
population. The observed mortality for this subpopulation is given by the formula 

# h 0 ( i ) [ 1  - e -  (x + u)x] 
~i (x) = t~0(i) + ke-(X + ~)x (23) /~+ 

with ko(i) = k0 + ik, t,0(i) = #0 + i# and with the same ), and ~. This means that the 
functional forms of  the observed mortalities for subpopulations are the same and 
differ only by parameter values. 

3.8. Survival in the empire 
Assume that in the compromise model we mark the subpopulations which are 

located in each state at time zero. Starting from this time we are interested in the 
evolution of these (infinite number) of  marked subpopulations. Each of these sub- 
populations evolves in accordance with its own mortality law gi(x) given by (23) 
and survival function 

- Ix~i (u)du 

S , { x )  = e J o  (24) 

The survival function for the total population can be represented as 

oo 

S ( x )  = E 7f i (xo)Si(x) (25) 
i = 0  

We already know that the survival function S(x) corresponds to a logistic mortality 
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rate ti(x) = f(x;a,/3,~0,7). Thus a population with logistic observed mortality can be 
represented as a mixture of populations with exactly the same (i.e. logistic) function- 
al forms of mortality. 

4. Discussion 

Assume that there are two groups of researchers who deal with mortality at older 
ages in Sweden. Both groups would like to investigate the mechanisms of mortality 
and aging. The first group believes that genetic factors play a key role in the aging 
process. The second group believes that a stochastic process of debilitation underlies 
the observed mortality pattern. To analyze the Swedish data, these two groups try 
to use an appropriate model of aging that is consistent with their assumptions. The 
first group prefers the gamma-Makeham model. The second group chooses the Le 
Bras model. 

Both groups fit their model and discover that their model fits the data well. In 
their reports, the groups provide interpretations of their findings. Researchers in the 
first group infer that they have found evidence of the presence of unobserved fixed 
heterogeneity in human mortality. They argue that this heterogeneity can be inter- 
preted as reflecting genetic factors. Representatives of the other group believe that 
they have found evidence that observed patterns of human mortality result from a 
process of stochastic aging and changing frailty. They conclude that health deterior- 
ation and environmental influences are responsible for the observed Swedish mortal- 
ity pattern. 

Suppose now that at some stage of their studies the groups of researchers discover 
that the two different concepts used in their research not only fit the data equally 
well but also yield exactly the same model of observed mortality. Moreover, they 
find that several other concepts lead to the same parametric structure of the observed 
mortality rate. What should the researchers do? The situation resembles the problem 
of non-identifiability in proportional-hazard models with fixed frailty: as discussed 
by Hoem [16], many underlying mortality rates and many frailty distributions pro- 
duce the same mortality pattern. Our results show that changing frailty models can- 
not be distinguished from a fixed frailty model (the gamma-Makeham model). This 
feature demonstrates an important duality in aging, analogous to the duality in 
physics between wave and particle theories. The observed pattern of aging can be 
explained in at least two different ways, which involve two different concepts of 
changing chances of death with age on the individual level. The concepts are not con- 
tradictory but complimentary. They focus attention on different aspects of the com- 
plicated process of survival. 

5. Conclusion 

In the statistical analysis of data, results and conclusions depend not only on the 
data per se but also on basic assumptions about the mechanisms which generated 
the data. It is very important to know how much a data set itself 'can say'. 
Researchers often become disappointed when they learn that data sets frequently tell 
us surprisingly little, or, at least, not so much as we expected. In this article, we have 
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shown that mortali ty data alone cannot  solve an impor tant  problem concerning the 
nature of survival mechanisms. In  particular,  we proved that without  addit ional  

covariates or assumptions,  the fixed frailty gamma-Makeham mortal i ty model can- 

not  be distinguished from the Le Bras model of stochastically changing frailty, and 
several changing frailty models cannot  be distinguished from each other. These ex- 
amples illustrate that even when a model fits the data, the concepts used to construct  
the model may not  be correct. 
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