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To develop a model to estimate the degree of unobserved 
heterogeneity in morality risks in a population, it is nec- 
essary to specify two types of functions, one describing the 
age-specific rate of increase of mortality risks for individ- 
uals and the other describing the distribution of mortality 
risks across individuals. There has been considerable in- 
terest in the question of how sensitive the estimates of 
heterogeneity are to the choices of these functions. To 
explore this question, high-quality data were obtained from 
published Medicare mortality rates for the period 1968- 
1978 for analysis of total mortality among the aged. In 
addition, national vital statistics data for the period 1950- 
1977 were used to analyze adult lung cancer mortality. For 
these data, the estimates of structural parameters were less 
sensitive to reasonable choices of the heterogeneity distri- 
bution (gamma vs. inverse Gaussian) than to reasonable 
choices of the hazard rate function (Gompertz vs. Weibull). 
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1. INTRODUCTION 

The importance of representing the effects of unob- 
served population heterogeneity on estimates of transition 
probabilities in stochastic process models is well known. 
For example, the implications of heterogeneity for esti- 
mating transition rates in fertility processes were analyzed 
by Sheps and Menken (1973). Shepard and Zeckhauser 
(1977) showed that neglecting heterogeneity produces 
overestimates of the effects on life expectancy of a given 
medical improvement. Keyfitz and Littman (1979) illus- 
trated the potential bias due to heterogeneity, using a life 
table model in which the heterogeneous population is rep- 
resented as a discrete mixture of homogeneous subgroups. 
They showed that ignoring heterogeneity leads to an in- 
correct calculation of the expectation of life from known 
death rates except in the special case of fixed mortality 
patterns in a stationary population. A similar conclusion 
was reached by Vaupel, Manton, and Stallard (1979) using 
an infinite mixture model in which an unobserved non- 
negative random variable termed frailty represents all in- 
dividual differences in endowment for longevity. 
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Population heterogeneity implies a mixture problem that 
can be formulated as follows. Let {(Xi, Za), i = 1, 2, . . 
n} be a sequence of n iid bivariate random vectors with 
(X, Z) having the cdf F(z) on Z and, conditionally on Z 
= z, F(x I z) on X. Assume that F(x I z) is absolutely 
continuous on [0, oo) and let f (x I z) denote the corre- 
sponding conditional density. In our analysis of mortality, 
Xi = xi is the observed lifetime of the ith individual and 
Zi is an unobserved random variable that is related to his 
or her longevity. Thus the marginal density f (x) of X de- 
pends on f (x I z) and F(z) and is obtained as 

f (x) = f f (x I z) dF(z), x 0. (1.1) 

Given that one can estimate f (x) from the observed se- 
quence x1, . . . , xn, it is then relevant to ask whether one 
can also obtain unique estimates of F(z) and f (x I z) using 
(1.1). 

Following Vaupel et al. (1979), we assume that Z is a 
nonnegative frailty variable that operates multiplicatively 
on the conditional hazard f(x I Z = 1)/[1 - F(x I Z = 
1)] and that F(z) is absolutely continuous on [0, oo). Thus 
we need to consider the identifiability of the proportional 
hazard model (Cox 1972) in the context of an unobserved 
covariate. (Later we will modify the proportional hazard 
assumption to allow for an additive constant, but this need 
not concern us now.) 

To apply this formulation one must impose identifying 
constraints on f (x I z) and F(z) (Elbers and Ridder 1982; 
Heckman and Singer 1984). The form of these constraints 
depends on the nature of the data being analyzed. Our 
data on total mortality are annual mortality counts for 20 
cohorts in the 11-year period 1968-1978. Hence we have 
no covariates, the data are both left and right censored, 
and the individual lifetimes (xi's) are known to lie only 
within a specified 2-year interval (i.e., because cohorts are 
defined on a 1-year age basis). 

Heckman and Singer (1984) showed that identifiability 
of proportional hazard models with X continuous and un- 
censored, and with no observed covariates, requires (a) 
that f (x I z) is a member of a known finite parameter fam- 
ily of distributions and (b) that certain restrictions are im- 
posed on the moments of admissible distributions of Z. 
For example, the restriction that the mean of Z be finite 
is sufficient to resolve a nonidentifiability aspect of mix- 
tures of Weibull densities described by Jewell (1982). In 
our case, with each xi known only to be in a given interval, 
we specify both f(x Iz) and F(z) to be known finite pa- 
rameter families; we further restrict F(z), however, to be 
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a natural exponential family with all positive moments fi- 
nite. 

Assuming that finite parameter families for both f (x I z) 
and F(z) had three additional advantages in our applica- 
tion, we note the following. (a) With only 11 observations 
per cohort, it follows from Lindsay (1983) that a fitted 
discrete mixture model for F(z) could have at most only 
a few support points because of the degrees of freedom 
consumed by the parameters of f (x I z). Thus for our data 
a flexible parametric functional form for F(z) is likely to 
represent a continuous gradation of frailty values better 
than a discrete mixing distribution with only a small num- 
ber of support points can. (b) If we restrict our choice of 
F(z) to parametric families for which (1.1) can be inte- 
grated analytically, the estimation problem (for uncen- 
sored data) reduces to the usual maximum likelihood prob- 
lem and the potential for implementing the model is 
increased. (c) Whereas we can deal with right censoring 
in our data by conditioning the number of deaths in each 
calendar year on the number of persons alive in the cohort 
at the start of that year, dealing with left censoring presents 
a more difficult problem. If we restrict our choice of F(z) 
to parametric families that are closed under mortality se- 
lection and if it can be assumed that all left censoring is 
due to mortality, then the conditional distribution of Z in 
the cohort subgroup alive at the start of each year will be 
of known parametric form. Furthermore, this strategy per- 
mits the multiple cohorts to be analyzed simultaneously 
with cross-cohort constraints imposed on selected param- 
eters. 

Using this strategy, we investigated the sensitivity of the 
parameters of f (x I z) to various choices of parametric fam- 
ilies of distributions for F(z) and the sensitivity of the 
parameters of F(z) to various choices of parametric fam- 
ilies of distributions for f(x I z). Parametric families of 
distributions for f (x I z) and F(z) were selected from the 
demographic and actuarial literature on mortality in adult 
populations and were chosen to be consistent with biolog- 
ical insights into human mortality processes. In the follow- 
ing sections of the article we describe the population and 
mortality data used in the analyses (Sec. 2), define the 
concept of frailty (Sec. 3), list the parametric families of 
distributions fit to the data in paired combinations (Sec. 
4), describe our maximum likelihood estimation procedure 
(Sec. 5), present results (Sec. 6), compare the results on 
the sensitivity of parameter estimates in the mortality anal- 
yses with the results of other analyses (Sec. 7), and present 
conclusions (Sec. 8). 

2. DATA 

2.1 Medicare Data 

The first set of data consists of population and mortality 
counts derived from published Medicare data on cohort 
mortality rates for 20 male and female birth cohorts, born 
from 1883 to 1902, who were followed for 11 years, from 
1968 to 1978 (Wilkin 1982). These cohorts included 8 mil- 
lion males and 10 million females at the initial observation 
in 1968, when they ranged in age from 65 to 84 years. Of 

these, 60% of the males and nearly 50% of the females 
died during the 11-year follow-up period. 

These data represent a substantial improvement over the 
usual mortality and population data available from the Na- 
tional Center for Health Statistics (NCHS) and the Bureau 
of the Census. In the Medicare data, misstatement of age 
is minimized because of requirements of verification of age 
to gain entitlement, underregistration of deaths is small 
because of payment of lump-sum death benefits, and the 
problem of underenumeration in census data does not ap- 
ply because the at-risk group is defined by Medicare pro- 
gram records. Difficulties with census and NCHS data in- 
volve incompleteness of coverage and age misreporting 
(Rosenwaike 1981). 

2.2 Lung Cancer Data 

The second set of data consists of midyear population 
and lung cancer mortality counts in the U.S. white popu- 
lation for nine male and nine female birth cohorts, born 
each fifth year in the period from 1880 to 1920, who were 
followed for 28 years, from 1950 to 1977 (Manton and 
Stallard 1982). The lung cancer mortality counts were ob- 
tained from tabulations of computer tapes from NCHS. 
The population data were obtained by linear interpolation 
of race- and age-specific counts from the censuses of 1950, 
1960, and 1970, and intercensal estimates for 1971-1977; 
these data were adjusted for underenumeration, race mis- 
classification, and age misreporting errors (Coale and Zel- 
nik 1963; Passel, Siegel, and Robinson 1982; Siegel 1974). 

3. FRAILTY 

3.1 Total Mortality 

To model the effects of unobserved individual differ- 
ences in longevity characteristics we defined z as a measure 
of frailty and assumed that z operated multiplicatively on 
either the total mortality hazard rate or, more generally, 
on a component of the total mortality hazard rate. Spec- 
ification of the effects of z in terms of the hazard rate is 
consistent with biological theories of the mortality process 
(Sacher and Trucco 1962); the multiplicative form of this 
specification is well known because of its use in the Cox 
regression model (Cox 1972; Kalbfleisch and Prentice 1980), 
where it is used to assess the effects of observed physio- 
logical factors on survival. The conditional hazard rate 
,u(x z) is modeled as 

,u(x z) = zA (x) + 0, z - 0, A(x) 0- , 0 - 0, (3.1) 

where A(x) is a function of age x, which is independent of 
z, and 0 represents a constant component of the mortality 
hazard, which is independent of age x and frailty z. Setting 
0 = 0 in (3.1) yields the multiplicative hazard rate model. 
We refer to A(x) as the "standard" force of mortality, that 
is, the force of mortality obtained when z = 1 and 0 = 0. 
In the Cox model A(x) need not be specified because it 
cancels out of the partial likelihood function. In our model 
A(x) will be specified in (4.7)-(4.8) as one of two parametric 
functions of age based on biological theory. 

Other possibilities for modeling frailty include the ac- 
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celerated failure time model with frailty operating multi- 
plicatively on the failure time, for example, 

,u(x z) = zA(x * z), z-0, x-0. (3.2) 

Interestingly, the two-parameter Weibull model for A(x) is 
closed under multiplication of both the hazard rate function 
A(x) and the failure time x by an arbitrary constant such 
as z; this property is unique to the Weibull family of dis- 
tributions (Kalbfleisch and Prentice 1980). Additional lev- 
els of generality might be introduced by permitting z to 
vary over time or age. Models of this type are discussed 
in Woodbury and Manton (1977), in Manton and Stallard 
(1984), and in Yashin, Manton, and Vaupel (1985). 

3.2 Cause-Specific Mortality 

The frailty concept extends to the analysis of several 
causes of death, using competing risk theory (Gail 1975). 
Let zT = (zil, . . . Zim) denote m frailty values for the ith 
individual and let xT = (xil, . . ., Xim) denote m failure 
times such that the observed lifetime xi = min(x1i, . 
Xim). Assumptions concerning the dependence between 
various causes of death may be introduced through the 
joint distribution of the elements of (xi, zi) (Hougaard 
1984; Manton and Stallard 1980, 1984; Vaupel and Yashin 
1983). Alternatively, independent competing risk models 
may be formulated by assuming statistical independence 
of the bivariate component vectors (xi1, z1i), j = 1, , 
m. In either case, if each cause-specific frailty zij operates 
multiplicatively on an associated cause-specific standard 
hazard rate p1(x), which is defined assuming the presence 
of the other failure types, then the conditional hazard rate 
for all causes of death is 

,U(X I Zi) = Zi1A1(x) + --- + ZimAm(X). (3.3) 

A model of the form (3.1) with 0 replaced by 0(x) is ob- 
tained by integrating all but one of the zij's out of (3.3), 
assuming that the particular zij is independent of the other 
zil's. 

4. ASSUMPTIONS ABOUT F(z) AND f(x Iz) 
4.1 Frailty Distribution 

We selected the following three models of the frailty 
distribution F(z) for evaluation. 

1. Gamma 
dF( Z (/ y2) 1/Y2 exp( - ZICy2)dz 

zF(J / y2) 

z?0, >0,y>0. (4.1) 
2. Inverse Gaussian 

/ 1/2 F-( )1 

dF(z) = (2 exp ( 2 dz, 
\2iry2Z3/ 2Cy2ZJ- 

z >0, C> 0, y >0. (4.2) 
3. Degenerate 

= 0, z < (. (4.3b) 

The mean frailty is C and the coefficient of variation is y. 
The degenerate distribution is obtained from (4.1) or (4.2) 
as the limiting form as y I 0. 

The gamma model of frailty is well known and was stud- 
ied in a range of applications by Beard (1963), Shepard 
and Zeckhauser (1977), Vaupel et al. (1979), Manton and 
Stallard (1979, 1980, 1981, 1984), and Vaupel and Yashin 
(1983). General characteristics of the gamma distribution 
are discussed in Morris (1982, 1983). The inverse Gaussian 
distribution was introduced as a model of frailty by Hou- 
gaard (1984) as an alternative to the gamma model. Gen- 
eral characteristics of the inverse Gaussian distribution are 
discussed in Tweedie (1957). The parameterization given 
in (4.2) excludes a subset of inverse Gaussian distributions 
with infinite moments of any finite order (Hougaard 1984). 
Hence mixtures of Weibull and Gompertz densities based 
on (4.2) will satisfy the identifiability conditions of Heck- 
man and Singer (1984). The same comment applies to mix- 
tures based on (4.1). 

In biological applications, the fact of heterogeneity has 
been argued to be virtually self-evident (e.g., Matis and 
Wehrly 1979). Furthermore, there are numerous epide- 
miological studies of total and cause-specific morbidity and 
mortality that demonstrate (a) the wide range of risk levels 
in human populations and (b) that these risk levels are 
associated with gradients in continuously distributed co- 
variates. The gamma and inverse Gaussian models rep- 
resent rich families of distributions to describe this contin- 
uous variability in biological risks. The gamma model is 
also argued (Beard 1963) to be a reasonable model for the 
distribution of longevity potential where that potential is 
determined by a small number of genetic factors (Strehler 
1977, pp. 367-368). 

The gamma and inverse Gaussian models share an im- 
portant closure property that facilitates analysis of left- 
censored cohort data. If the initial frailty distribution is of 
the form (4.1) or (4.2), then the expected frailty distri- 
bution among survivors will have the same form. More 
specifically, replace C and y in (4.1) and (4.2) with C(xo) 
and y(xo) to represent the frailty distribution at age xo. 
Then the parameters of the expected frailty distribution at 
any later age x are 

xo 
=(X C(XO)I[1 + JC(Xo)y2(Xo) Atd]l 

x 2 xo (4.4) 

y2(X)= y2(xO)[C(X)IC(Xo)]'-1, x 2 X0, (4.5) 

where 1 is a constant set at 1 = 1 for the gamma model 
and 1 = 2 for the inverse Gaussian model. The mean frailty, 
4(x), declines monotonically with age under both models. 
The coefficient of variation y(x) declines monotonically 
with age for the inverse Gaussian model but is constant 
for the gamma model [see Hougaard (1984) for further 
comparisons]. As pointed out by a referee, it follows from 
Morris (1982) that the gamma family is the unique natural 
exponential family for which the coefficient of variation is 
constant under such a mortality process. 
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The marginal force of mortality ,u(x) is obtained from 
(3.1) as 

,u(x) - ((x) A(x) + 0. (4.6) 

Thus the parametric form selected for A(x) affects ,u(x) 
directly through the first term in (4.6) and indirectly through 
the effect on the denominator of the expression for ((x) 
in (4.4). 

4.2 Standard Force of Mortality 

Two general models of the conditional hazard rate,u(x I z) 
were selected for evaluation. These differ according to the 
functional form selected for A(x) in (3.1). 

1. Makeham 

A(x) = a exp{flx}, a > 0. (4.7) 

2. Extended Weibull 

i(x) = ax#-', a> 0, 3> 0. (4.8) 

These expressions can be substituted for A(x) in (3.1) to 
obtain the associated conditional hazard rates. When 0 = 

0, the Makeham model reduces to the well-known Gom- 
pertz form and the extended Weibull model reduces to the 
Weibull form. 

The Gompertz function has been used by actuaries since 
1825, whereas the Makeham modification (0 > 0) has been 
in use since 1860. A number of biological theories of aging 
have been developed that imply a Gompertz form of the 
conditional hazard rates. Several of these theories are re- 
viewed in Strehler (1977, chap. 5) and in Economos (1982). 

Although the Weibull function was introduced in engi- 
neering and reliability analysis, it has been used in mor- 
tality analysis by Rosenberg, Kemeny, Smith, Skurnick, 
and Bandurski (1973) and by Burch, Jackson, Fairpo, and 
Murray (1973). It is the hazard function implied by various 
"hit" or genetic error models of human aging and mortality 
(e.g., Failla 1958). The Weibull function has also been 
widely accepted in studies of human carcinogenesis (Ar- 
mitage and Doll 1954, 1961; Cook, Doll, and Fellingham 
1969). The usual biological interpretation given to the Wei- 
bull model involves the accumulation of "hits" or the pas- 
sage through various discrete stages of a process. Watson 
(1977) showed that the Weibull hazard model was appro- 
priate even if certain discrete changes could be reversed. 

Both the Gompertz and the Weibull hazard rate func- 
tions correspond to extreme value distributions (Mann, 
Schafer, and Singpurwalla 1974, pp. 106-108). In this 
framework, if the failure of a complex organ system occurs 
at the time of failure of the first of many components, then 
the approximate mortality hazard rate can be Gompertz 
or Weibull in form, even though the hazard rate functions 
for the failure of the individual components are not Weibull 
or Gompertz in form. 

Traditionally, the Gompertz function has been used for 
modeling total mortality and the Weibull function has been 
used for cause-specific mortality, such as that due to lung 
cancer. Because biologically plausible arguments have been 
made, however, for using the Weibull function for total 

mortality (Burch et al. 1973; Rosenberg et al. 1973) and 
the Gompertz function for lung cancer mortality (Dix, 
Cohen, and Flannery 1980), we will use both functions in 
both contexts. 

5. ESTIMATION 

Maximum likelihood estimation procedures were used 
to fit 12 models (4 hazard rate models paired with 3 mixing 
distributions) to the Medicare data and a subset of 6 models 
to the lung cancer data. The Medicare data were in the 
form of annual numbers of deaths paired with estimates 
of the initial exposed population at the start of the year. 
Thus the likelihood is binomial in form, 

= [J [J e Mlk(Nlk Dk)(1 - e Mlk)Dk, (5.1) 
j k 

where j denotes cohort and k denotes the observation within 
cohort, Djk and Njk denote the counts of deaths and the 
exposed population size for the kth observation on cohort 
j, and Mjk denotes the integral of the marginal hazard rate 
over the 1-year interval. Parameters were introduced into 
(5.1) using the approximation Mjk = ,U(Xjk + 2), where Xjk 

is the midpoint of the 1-year age interval spanned by the 
cohort at the start of the year and 

1u(x) = A(x) + 0, (5.2) 

1 + Jy2(0) fA(t)dt1 "I 

which is the same as (4.6) except that C(0) = 1 and xo = 

0. 
The lung cancer data were in the form of annual numbers 

of deaths due to lung cancer paired with estimates of the 
midyear population counts, which were assumed to be equal 
to the person-years of exposure. Under the assumption 
that lung cancer frailty is independent of all other cause- 
specific frailties and using the approximation Mjk = ,U(Xjk 

+ 2), the likelihood is Poisson in form, 

= [I [I (Mjk Pjk)Dlk exp(-Mjk Pjk)IDjk!, (5.3) 
j k 

where Djk denotes the number of deaths due to lung cancer 
and Pjk is the person-years of exposure. Using (4.7) or 
(4.8) to parameterize A(x) in (5.2), we see that the pa- 
rameters to be estimated are a, fi, y2(0), and 0. For the 
degenerate mixture model, y2(0) is set to zero and the right 
side of (5.2) reduces to A(x) + 0. As noted previously, 1 
= 1 for the gamma mixture model and 1 = 2 for the inverse 
Gaussian mixture model. For the Gompertz and Weibull 
hazard rate models, 0 was fixed at 0 = 0; for the Makeham 
and extended Weibull hazard rate models, 0 was restricted 
to be nonnegative on the basis of biological arguments 
(Horiuchi and Coale 1983). 

Certain subsets of the models are nested. Statistical test- 
ing of nested models was conducted using standard like- 
lihood ratio tests (Kendall and Stuart 1973). In addition, 
(5.1) achieves a maximum ?t* at M1,, = -ln(1 - D1k/N)k) 
and (5.3) achieves a maximum ?t* at M1, = DjkIP1k. An 
approximate goodness-of-fit test can be performed using 
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X2 - -2 ln(S/S*). Furthermore, estimates of standard er- 
rors can be obtained from the observed information matrix 
(Efron and Hinkley 1978). 

6. RESULTS 

6.1 Medicare Data 

As described, we fit 12 alternative models to population 
and mortality count data for 20 male and female cohorts. 
The various models evaluated are named according to the 
distribution and hazard rate assumptions employed. The 
likelihood ratio chi-squared test statistics for the various 
models are presented in Table 1. These x2 values refer to 
the fit of each model vis-a-vis the completely saturated 
model. Alternative tests can be constructed in the case of 
nested hierarchical models. For example, one may com- 
pare the gamma/Gompertz x2 of 1,020.63 for males with 
the degenerate/Gompertz x2 of 1,216.74 to obtain a chi- 
squared value of 196.11 with 1 df-a highly significant 
value. 

All models indicated in Table 1 were estimated with 20 
cohort-specific values for the parameters a and ,B. These 
parameters consumed 40 df in each analysis, leaving a re- 
sidual of 180 df. For the models with 178 or 179 df, pa- 
rameter estimates for y2(0) and 0 (in Makeham and ex- 
tended Weibull hazard rate models) were constrained equally 
across cohorts and hence consumed 1 df each. The models 
with 160 df were estimated with 20 cohort-specific values 
for y2(0) and with 0 = 0. 

Examination of Table 1 indicates that certain models are 
to be preferred. For example, in all Makeham models the 
unrestricted maximum likelihood estimator 0 is negative 
and is biologically unacceptable; hence 0 is constrained to 
zero. For the extended Weibull models mixed with either 
the gamma or inverse Gaussian distributions, 0 is positive 
but not statistically significant. To test the hypothesis of 
homogeneity of frailty in the cohort, one can compare each 
degenerate model with one of the two other models on the 
same line in Table 1; 16 tests can be specified and all are 
highly significant. Thus under all choices of either the het- 
erogeneity distribution or the hazard rate function within 
these families the hypothesis of homogeneity is rejected. 

The smallest x2 value is 48.08 for the comparison for males 
of the degenerate/Weibull model with the inverse Gauss- 
ian/Weibull model. Thus our attention is focused on the 
four models involving the combination of the gamma and 
inverse Gaussian distributions with the Gompertz and Wei- 
bull hazard rates. 

Having rejected the degenerate distribution models, we 
also tested the adequacy of the pooled estimate of y2(0) in 
each of the four models. This was a 19-df test involving 
comparison of the 160-df x2 with the corresponding 179-df 
X2 in Table 1. The gamma/Gompertz model yielded a mar- 
ginally significant x2 value for females (x2 = 34.81; p - 
.015); the other seven tests were not significant. As a con- 
sequence we preferred the four 179-df models on the basis 
of parsimony. 

To evaluate the relative performance of these four models, 
we compared the x2 goodness-of-fit statistics obtained in 
Table 1. This is an informal evaluation because the models 
are not nested hierarchically; methods of constructing for- 
mal tests are discussed in Loh (1985). For males, the best 
fit is obtained for the gamma/Weibull model (x2 = 1,015) 
and the worst fit is obtained for the inverse Gaussian/ 
Gompertz model (A%2 = 38.22). The inverse Gaussian/ 
Weibull model is a close second (Ax2 = 4.00), with the 
gamma/Gompertz model ranking third (Ax2 = 5.45). Thus 
the gamma model performs better as a distribution of frailty, 
and using the gamma the Weibull model fits better than 
the Gompertz model. Figure 1 illustrates the fit of the 
gamma/Weibull model to the observed data for males born 
in 1885, 1890, 1895, and 1900. 

For females the best fit is obtained for the gamma/Wei- 
bull model (y2 = 1,196). The worst fit is produced by the 
inverse Gaussian/Gompertz model (Ay2 = 54.98). The 
inverse Gaussian/Weibull (Ay2 = 5.16) and gamma/Gom- 
pertz (Ay2 = 19.18) models rank second and third. Thus 
the results for females support a choice of the gamma/ 
Weibull as the preferred distribution/hazard rate model. 

Because our sample size was very large (8 million males; 
10 million females), we expected to find that the x2 good- 
ness-of-fit values produced in the analysis would be large 
even if the fit of the model was good in terms of percentage 
error (e.g., as in Fig. 1). Nonetheless, the values in Table 

Table 1. Likelihood Ratio Goodness-of-Fit x2 Values for Alternative Models 

Conditional Inverse 
hazard Gamma Gaussian Degenerate 

Males 
Makeham 1020.63 (178) 1053.40 (178) 1216.74 (179) 
Gompertz 1020.63 (179) 1053.40 (179) 1216.74 (180) 

996.62 (160) 1042.72 (160) 
Extended Weibull 1014.82 (178) 1018.70 (178) 1067.26 (179) 
Weibull 1015.18 (179) 1019.18 (179) 1067.26 (180) 

997.92 (160) 1001.95 (160) 

Females 
Makeham 1215.34 (178) 1251.14 (178) 1542.41 (179) 
Gompertz 1215.34 (179) 1251.14 (179) 1542.41 (180) 

1180.53 (160) 1229.05 (160) 
Extended Weibull 1196.13 (178) 1200.30 (178) 1301.65 (179) 
Weibull 1196.16 (179) 1201.32 (179) 1301.65 (180) 

1178.36 (160) 1183.11 (160) 

NOTE: Degrees of freedom are given in parentheses. 
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Figure 1. Fit of the Gamma! Weibull Model to Medicare Mortality Data 
for Four Male Cohorts Born in 1885, 1890, 1895, and 1900. The four 
smooth lines show the age trajectory of the marginal hazard rate function 
within the age range of observation for each of the four cohorts. These 
marginal hazard rates were computed as indicated in Equation (5.2) 
with parameter estimates obtained from the 179-df gammal Weibull model 
with cohort specific estimates of a and # and pooled estimates of y2(Q). 
The scatter is the set of observed cumulative hazard rates for the 1- 
year interval of observation, plotted at the midpoint XJk + I of the age 
interval (X,k, X,k + 1). 

1 were large enough to warrant examination of the pattern 
of residuals. We defined a chi-variate as X = 7 with the 
sign set the same as the sign of the residual and computed 
these values for our four models. We found that the num- 
ber of sign runs within cohort was near expectation, but 
across cohort there were several years for which all resid- 
uals had the same sign. This suggested that there were 
"period effects" operating on our data that tended to raise 
or lower the death rates in a given year for all cohorts. We 
attempted to determine if the lack of fit of the gamma/ 
Weibull model could be explained by period effects, rep- 
resented by linear trends in the X values for each year. 
Fitting these period effects produced an absolute fit for 
males (i.e., a residual x2 of 176.9 with at least 157 df; p - 
.13) and given the population size, a near fit for females 
(X2 = 205.6 with at least 157 df; p - .006). 

A statistically acceptable fit to the data is not helpful if 
parameter estimates are not in the range considered bio- 
logically feasible for the mortality processes being evalu- 

Table 2. Alternative Estimates of Squared Coefficient of Variation, 
y2(0), of Marginal Frailty Distribution 

Conditional 
hazard Gamma Inverse Gaussian 

Males 
Gompertz .211 .443 

(.015) (.079) 
Weibull .091 .122 

(.013) (.024) 
Females 

Gompertz (.288) .662 
(.01 6) (.089) 

Weibull .141 .208 
(.01 4) (.030) 

NOTE: Standard errors are given in parentheses. 

ated (Murphy 1978). Hence we will evaluate the physical 
implications of our parameter estimates. First, in Table 2 
we present alternative estimates of the parameter y2(0) for 
our four models. For males, the estimates range from .091 
for the gamma/ Weibull model to .443 for the inverse Gauss- 
ian/Gompertz model. For females, the estimates range 
from .141 to .662 for the same two models. The gamma/ 
Gompertz estimates are just over twice those of the gamma/ 
Weibull model; the inverse Gaussian/Gompertz estimates 
are from 3.2 to 3.6 times those of the inverse Gaussian/ 
Weibull model. 

Though estimates of y2(0) for the gamma model are smaller 
than for the inverse Gaussian model, the coefficient of 
variation in the gamma model is invariant over age, whereas 
it declines with age in the inverse Gaussian model. Thus 
at more advanced ages the relative heterogeneity will be 
similar under the two models. Table 3 displays the values 
of y2(x) obtained from Equation (4.5) for the 1892 birth 
cohort (the 11th cohort in our set of 20 cohorts). 

The change in y2(x) is larger from ages 65 to 95 years 
than from ages 0 to 65 years. For males, the value of y2(x) 
at age 90 years is below the corresponding value for the 
gamma model. For females, the value at age 90 is still larger 
than the value for the gamma model, though it is seen that 
they will eventually cross over. Within the range of the 
data (ages 65 to 94 years) the estimates of the coefficients 
of variation of the conditional frailty distribution are sim- 
ilar in the gamma and inverse Gaussian models. 

The ratio of y2(x) at age 90 years between the Gompertz 
and the Weibull functions is approximately 2 to 1. This 
occurs for both sexes and replicates the behavior of the 
y2(0) estimates for the gamma model in Table 2. Thus one 
can see that the estimate of the heterogeneity of frailty at 
age 90 years is sensitive to the function selected to rep- 
resent the conditional hazard rate but is relatively insen- 
sitive to the function selected to represent the conditional 
frailty distribution. 

Table 4 contains alternative estimates of ,B for 10 alter- 
nate male cohorts for 3 Gompertz conditional hazard rate 

Table 3. Alternative Estimates of y2(x), Age-Specific Squared 
Coefficient of Variation of Conditional Inverse Gaussian 

Frailty Distribution Based on a and ,B Parameter 
Estimates for the 1892 Birth Cohorts 

Males Females 

Age Gompertz Weibull Gompertz Weibull 

0 .443 .122 .662 .208 
45 .430 .121 .653 .207 
65 .375 .117 .597 .202 
70 .347 .115 .561 .198 
75 .313 .111 .511 .192 
80 .275 .106 .449 .182 
85 .236 .099 .381 .170 
90 .198 .092 .312 .155 
95 .163 .084 .249 .138 

Gamma model 
.21A1 .091 .288 .141 

[88.2] [90.5] [91 .8] [94.1 ] 

NOTE: Values in brackets indicate ages at which y2(x) for the inverse Gaussian model are the 
same values as for the Gamma model. 
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Table 4. Alternative Estimates of Gompertz Rate Parameter,B 
Under Three Marginal Distributions of Frailty, for Males 

Cohort! ,B x JQ2 

age range Gamma Inverse Gaussian Degenerate 

1902 7.34 7.96 6.26 
65-75 (.10) (.24) (.06) 

1900 7.38 8.03 6.11 
67-77 (.1 1) (.26) (.06) 

1898 7.73 8.40 6.26 
69-79 (.12) (.28) (.06) 

1896 7.88 8.54 6.18 
71-81 (.14) (.30) (.06) 

1894 8.20 8.84 6.22 
73-83 (.15) (.31) (.06) 

1892 8.65 9.24 6.32 
75-85 (.18) (.33) (.06) 

1890 9.14 9.67 6.44 
77-87 (.21) (.35) (.07) 

1888 9.48 9.83 6.34 
79-89 (.24) (.36) (.07) 

1886 9.81 9.90 6.17 
81-91 (.28) (.35) (.08) 

1884 10.29 10.06 6.09 
83-93 (.32) (.35) (.09) 

NOTE: Standard errors are given in parentheses. 

models (i.e., the gamma/Gompertz and inverse Gaussian/ 
Gompertz models with 179 df each and the degenerate/ 
Gompertz model). Corresponding estimates for the Wei- 
bull models are contained in Table 5. In all cases, the 
estimates of ,B under the degenerate distribution model 
(i.e., for the homogeneity model) are much smaller than 
for the two models with heterogeneity. Thus not only is 
the fit of the degenerate distribution model worse than the 
fit of the models with heterogeneity but the trajectory of 
the age increase in risk implied by the ,B estimates is biased 
downward vis-a-vis both heterogeneity models. The pa- 
rameter estimates obtained for both heterogeneity models 
are similar. This is consistent with the finding that the 
coefficients of variation of frailty within the range of the 
data are also comparable for both heterogeneity models. 

Table 5. Alternative Estimates of Weibull Exponent Parameter ,B 
Under Three Marginal Distributions of Frailty, for Males 

Cohort! 
age range Gamma /3, Inverse Gaussian Degenerate 

1902 5.77 5.85 5.44 
65-75 (.06) (.09) (.04) 

1900 5.86 5.94 5.46 
67-77 (.07) (.10) (.04) 

1898 6.16 6.26 5.69 
69-79 (.08) (.11) (.04) 

1896 6.31 6.41 5.75 
71-81 (.09) (.13) (.05) 

1894 6.58 6.69 5.91 
73-83 (.10) (.14) (.05) 

1892 6.91 7.03 6.11 
75-85 (.12) (.17) (.05) 

1890 7.29 7.40 6.33 
77-87 (.14) (.19) (.06) 

1888 7.51 7.61 6.36 
79-89 (.17) (.21) (.06) 

1886 7.69 7.77 6.33 
81-91 (.20) (.24) (.07) 

1884 7.98 8.01 6.38 
83-93 (.24) (.27) (.08) 

NOTE: Standard errors are given in parentheses. 

For the Gompertz model, ,B x 102 is the annual per- 
centage increase in the force of mortality. For the 1890 
birth cohort, the gamma/Gompertz model suggests an in- 
crease of 9.1% per year; the inverse Gaussian model sug- 
gests 9.7% per year. The values for younger cohorts, though 
lower for both models, agree to within about .6% per year. 
The values for the inverse Gaussian/Gompertz model are 
all within the range .080-.104 cited by Spiegelman (1969, 
p. 132) as biologically plausible. 

For the Weibull model, ,B is the slope of the logarithm 
of the cumulative hazard rate as a function of the logarithm 
of age. As with the Gompertz parameters, one can see in 
Table 5 that the estimates of the Weibull fl's are similar 
for the gamma and inverse Gaussian models. This is con- 
sistent with the result in Table 3 that the estimated coef- 
ficients of variation at about age 90 years are also relatively 
insensitive to the selected form of the frailty distribution. 
The bias generated in estimating ,B by ignoring heteroge- 
neity appears to be greater than the bias induced by se- 
lecting a reasonable model of the frailty distribution. 

6.2 Lung Cancer Mortality 

To model the lung cancer death rates, we used the cohort 
lung cancer data for nine male and nine female cohorts in 
the U.S. white population for the period 1950-1977 (see 
Sec. 2). In fitting these data, we made the assumption that 
lung cancer frailty is statistically independent from all other 
cause-specific frailties. Chi-squared goodness-of-fit statis- 
tics for the six models fit to these data are presented in 
Table 6. For all models, cohort specific estimates of the 
parameters a and ,B were obtained; this accounts for the 
234 df in the degenerate distribution models in Table 6. 
The gamma and inverse Gaussian distribution models were 
estimated in the following two forms: (a) with pooled es- 
timates of y2(0) across cohorts (233 df) and (b) with cohort 
specific estimates of y2(0) (225 df). 

From Table 6 one can see that the only statistically ac- 
ceptable fit for males is obtained with the 225-df gamma/ 
Weibull model (Q2 = 249.33; p - .13; AXy2 = 48.67 over 
the next best model, the gamma/Gompertz model). The 
best fit for females is obtained with the 225-df gamma/ 
Gompertz model, but this is marginally significant (Q2 = 

271.90; p - .018). For males the models with cohort-spe- 

Table 6. Likelihood Ratio Goodness-of-Fit x2 Values for Six 
Alternative Models: Lung Cancer Mortality 1950-1977, 

U.S. White Population 

Conditional Inverse 
hazard Gamma Gaussian Degenerate 

Males 
Gompertz 580.94 (233) 1814.97 (233) 3451.85 (234) 

298.00 (225) 1573.26 (225) 
Weibull 401.11 (233) 777.02 (233) 1896.87 (234) 

249.33 (225) 744.20 (225) 
Females 

Gompertz 303.97 (233) 300.44 (233) 426.05 (234) 
271.90 (225) 277.62 (225) 

Weibull 292.69 (233) 294.00 (233) 299.78 (234) 
282.27 (225) 281.78 (225) 

NOTE: Degrees of freedom are given in parentheses. 
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cific estimates of y2(0) all fit significantly better than models 
with pooled estimates (e.g., AXy2 = 151.78 with 8 df); and 
both forms of the heterogeneity models fit much better 
than the comparable degenerate models. Comparable re- 
sults are obtained for females for the models with Gom- 
pertz hazard rates. For females, for the models with Wei- 
bull hazard rates, the cohort-specific estimates of y2(0) do 
not significantly improve the fit over that achieved by models 
with pooled estimates. 

The fit of the 225-df gamma/Weibull model for males is 
illustrated in Figure 2 for the 1885, 1895, 1905, and 1915 
birth cohorts. It can be seen that the model does a good 
job in reproducing the systematic increases over age in the 
cohort mortality data. It is also clear that a degenerate/ 
Weibull model will be unable to fit the almost constant 
hazard rate after age 85. 

In Table 7 are displayed the estimates of y2(x) based on 
Equation (4.5) for persons born in 1900, evaluated at sev- 
eral ages by using parameters estimated in the 225-df models. 
Here we see that the estimates of y2(x) for a specific hazard 
function and sex group for the inverse Gaussian model are 
equal to the estimates of y2(0) for the gamma model in the 
age range 59 to 72 years. This is within the age range 50 
to 77 years at which this cohort was observed. Further- 
more, we see that the estimates of y2(x) for males are only 
moderately sensitive to the function selected to represent 
the conditional hazard rate (a ratio of 1.6 to 1 for the 
gamma model) and to the function selected to represent 
the conditional frailty distribution. The sensitivity to the 
hazard rate function is more extreme in the female data: 
the gamma model produced estimates of y2(0) with a ratio 
of 3.0 to 1. In addition, from Table 7 one can see that the 
estimates of y2(x) for the gamma and inverse Gaussian 
mixtures for both hazard rate models will be nearly equal 
in value at about age 70 for females. Thus the estimate of 

0 1905 
0~~~~~~~~~~~~~~ 

o 1895 

x 30 S. : * 

LU- 

k20 1885 

< I1 

1915 
0 I ., I . I, I I | i 
30 40 50 60 70 80 90 

AGE 
Figure 2. Fit of the Gamma! Weibull Model to Lung Cancer Mortality 

Data for Four White Male Cohorts BoM in 1885, 1895, 1905, and 1915. 
The four smooth lines show the age trajectory of the marginal hazard 
rate function within the age range of observation for each of the four 
cohorts. These marginal hazard rates were computed as indicated in 
Equation (5.2) with parameter estimates obtained from the 225-df gamma! 
Weibull model with cohort specific estimates of a, f, and y2(Q). The 
scatter is the set of observed lung cancer death rates for the 1-year 
interval of observation, plotted at the midpoint Xx,, + 1 of the age interval 
(XIk, Xjk + 1). 

Table 7. Alternative Estimates of y2(x), Squared Coefficient of 
Variation of Conditional Inverse Gaussian Frailty Distribution 

for Persons Born in 1900: Lung Cancer Mortafity 
1950-1977, U.S. White Population 

Males Females 

Age Gompertz Weibull Gompertz Weibuil 

0 37.8 39.2 146.8 31.0 
(4.5) (6.7) (73.8) (22.2) 

45 35.3 38.2 142.0 30.9 
65 21.7 22.9 108.4 28.9 
75 12.9 13.3 74.3 25.7 
85 7.0 7.5 44.0 21.0 
95 3.7 4.4 20.3 15.9 

Gamma model 
27.6 16.7 86.7 28.7 
(1 .3) (1 -0) (1 9. 1 ) (1 6.1 ) 

[58.6] [70.9] [71.5] [65.9] 

NOTE: Standard errors are given in parentheses. Values in brackets indicate ages at which 
y2(x) for the inverse Gaussian model are the same values as for the Gamma model. 

y2(x) at these ages is much less sensitive to the choice 
between the gamma and the inverse Gaussian mixture 
models than to the choice between the Gompertz and Wei- 
bull hazard rate models. 

7. SELECT OBSERVATIONS AND COMPARISONS 

There are several comparisons that can be made to yield 
greater insight into the results of our analysis. 

1. Supplementary analyses were conducted on the Med- 
icare data, which included the adjacent five older birth 
cohorts (i.e., 1878-1882). Pooled estimates of y2(0) from 
these analyses were only slightly larger than the estimates 
presented in Table 2. The main difference occurred in the 
estimates of the parameter ,B. For both the inverse Gaussian 
and the degenerate mixture models (and less so for the 
gamma model), the ,B values obtained for the five older 
birth cohorts declined substantially over cohort age. This 
pattern of decline was unexpected but was consistent with 
the view that the Medicare age reporting at extreme ages 
is progressively less reliable. 

2. The estimates of ,B in Table 4 for the gamma/Gompertz 
and inverse Gaussian/Gompertz models are consistent with 
the range cited by Spiegelman (1969, p. 132) as biologically 
plausible. This range was developed from analyses of mor- 
tality data in a broad range of cohort and cross-sectional 
data and from a range of national data sets for the adult 
age range, primarily ages 35 to 85. Our analysis indicated 
that the same range of ,B applied to the Medicare mortality 
data, if the effects of heterogeneity were adequately rep- 
resented in the model. At the younger ages the effects of 
heterogeneity can be ignored (e.g., see Strehler and Mild- 
van 1960), but at the older ages the penalty is severely 
downward-biased estimates of ,B (e.g., in Table 4, the range 
is from .059 to .065). 

3. The estimates of y2(0) for the gamma/Gompertz model 
of the Medicare data compare well with estimates derived 
from an independent analysis of eight U.S. white cohorts 
born 1850-1885 using interpolated mortality data at 12 ages 
in the ranges 35 to 85 and 89 years (Manton, Stallard, and 
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Vaupel 1981, table 2). Using the transformation y2(0) = 
ilk, that analysis produced an estimate of .255 for y2(0) 
for U.S. males (approximately .211) and .352 for U.S. 
white females (approximately .288). These estimates are 
also consistent with the range obtained from Swedish co- 
hort mortality data, in the same age range, for which a 
lengthy historical data series of high quality is available 
(Manton et al. 1981). 

4. In proposing the inverse Gaussian mixture model, 
Hougaard (1984) suggested that it might be preferable to 
the gamma mixture model because it implies that the pop- 
ulation is more homogeneous at older ages. Our analysis 
indicates that within the range of the data both models 
produce comparable estimates of y2(x). Indeed, from Table 
3 we see that the inverse Gaussian mixture model implies 
greater heterogeneity in total mortality risks at all ages up 
to the range 88 to 94 years. 

5. For both total and lung cancer mortality data, the 
estimates of y2(x) at the midrange of the data were gen- 
erally more sensitive to the choice of Gompertz versus 
Weibull hazard rate models than to the choice of gamma 
versus inverse Gaussian mixture models. This may simply 
reflect the condition in elderly populations that endowment 
for longevity is unimodally distributed and that both mixing 
distributions are flexible enough to provide a reasonable 
approximation. A referee has noted that Ridder and Ver- 
bakel (1983) also found in a related context that their re- 
sults were less sensitive to the choice of frailty distributions 
than to the choice of conditional failure models. 

8. CONCLUSION 

The conclusion to be reached from the analyses and 
discussions is that estimation of hazard functions in het- 
erogeneous populations is subject to the same limitations 
as any other statistical analysis. That is, the firmer are the 
theoretical foundations and the more extensive is the data 
base, the greater is the detail of a model that can be es- 
timated. A key point is that heterogeneous population 
models may be constructed to be generalizations of ho- 
mogeneous population models. In this case, if the heter- 
ogeneity parameters prove to be significant in a hierar- 
chical series of tests, then failure to utilize the heterogeneous 
population form of the model is a serious analytic error. 

[Received November 1983. Revised November 1985.] 
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