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Abstract

Life expectancy in a heterogeneous population can be increased by lowering
mortality rates or by averting deaths at different ages, from different causes, for
different groups, as well as by changing the proportions of individuals in various
risk groups, perhaps by altering the transition rates between groups. Under-
standing how such changes in population structure affects life expectancy is useful
in evaluating alternative lifesaving policies.
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The individuals comprising the typical population of men, mice, or machines
face differing mortality chances. This heterogeneity arises, in part, from indivi-
dual characteristics that change or can be changed, like age, behavior, occupa-
tion, or residence. Alteration of the age composition, occupational structure, or
other pattern of heterogeneity in a population, perhaps as the result of some poli-
cy intervention, will change the distribution of mortality chances and hence
change the life expectancy of the population. In this paper we develop some formu-
las for analyzing how various kinds of changes in population structure will affect

life expectancy.

Change in life expectancy is a measure of the number of years of life saved
(or lost) by an alteration in population structure and hence is a useful measure for
policy analysis. In particular, this measure is appropriate for what might be
called target analysis. If limited resources are available for lifesaving interven-
tions, how should the resources be targeted? How effective would programs be
that are directed toward different age groups, diseases, risk groups (like
cigarette smokers), regions, etc? A complete target analysis would have to include
consideration of how difficult it is to focus an intervention on a particular group
and how resistant the group is to change. Nonetheless, understanding the benefits
of a change, if achieved, in life expectancy gained or life-years saved is clearly a

key component of any target analysis.

In addition to such policy applications, the methods and formulas presented in
this paper are useful in gaining a deeper demographic understanding of how mor-
tality rates, deaths, risk groups, and life expectancy are interrelated. How, for

instance, do mortality rates change if some deaths are averted?
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Four different analytical approaches are used in the paper to analyze the
demographic linkages between population structure and life expectancy: the
comparative-statics approach, the dynamics approach, computer simulation, and a
novel method that we call the ""second-chance' approach. The paper provides some
discussion and illustration of the strengths, weaknesses, and interrelationships

among these alternative methods of demographic analysis.

LIFE AND DEATH RATES

Consider, first, age structure as characterized by the survivorship function

—fp(s)d:
(z)=e O ' 1)

where u(zx) represents the force of mortality at age z. (Formula (1) and the
results that follow can be interpreted as pertaining to either period or cohort cal-
culations.) A change in u will change this age structure and hence life expectancy
at birth:

@
e°={l(z)dz ()

where w is an age beyond which no one lives.

The effect of a change in i on e, can be analyzed by either of two approaches.
In the comparative-statics approach, the trajectory of u is assumed to change to

M, where
wE)=@0Q -déz)HuE) ; )

the analyst relates the change 6(z) to the change in e, perhaps as measured by:

= . (4)

€o €o
In the dynamics approach, there is some rate of change in u(z.,t) over time ¢:
=9z, t)
plz . t) = —;(:tt—) ; (5)

the analyst relates this rate of change p(z.t) to the rate of change in ey(t):

dey(t)
dt
¢o(t)
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Both approaches are informative and we will consider both. For notational simpli-
city, we will drop the argument ¢ throughout and write u(zx) rather than u(z,t) and

eo rather than ey(t).

If p(z) is constant over an interval of time of length T, then
w(z) = wz)e TPE) (6)

Combining this result with (3) yields the relationship between p and §:

p(z) = —in (1 7-: 8(z)) o)
If 4 is small, this reduces to
FOLEL- S ®)

Hence, results concerning p(z) can be derived from results concerning &(z) and
visa-versa: the comparative-statics approach and the dynamics approach comple-
ment each other. Note that p(z) can be arbitrarily large, as long as T is small

enough.

A comparative-statics relationship can readily be derived from (1)-(4):

2
w fd(s Yu(s)ds
Si@)e?® -1]dz
Ae, 0
= = . 9)
€9
Si(z)dz
0
In the case of a uniform change in mortality at all ages,
6(z)=46 , allz ,
formula (9) can be rewritten as
w
A Si(z)e &) _1)4z
e
9 -2 . (10)
€o

@
fl(:c Ydz
0

For small §,

eInl(x) _ 1 » _ginl(z) . ab



Hence
— & SH (12)
where

@
—f L(z)nl(z)dz
0

H = : 13
S l(=z)dz s

In the limit, as § approaches zero, formula (12) holds exactly. Consequently, it is

apparent that

de,
dt
€o

= pH , (14)

where p is the uniform rate of progress in reducing mortality rates:

—du(z)
dt

—_— . 15
Hz) all z (15)

p =
Thus, for small changes in u, the comparative-statics approach yields the same
formulas as the dynamics approach. Keyfitz (1977) derived (14) and noted that #
is a measure of age heterogeneity; as Demetrius (1979) indicated, # can be inter-

preted as the entropy of the age composition of the population.

THE SECOND-CHANCE APPROACH

Interventions to reduce mortality (or equipment failure) work by saving lives,
i.e. by averting the scythe of death. Suppose that for some proportion § of a
cohort (perhaps a synthetic period "cohort'), death is averted once. Let [(x)
represent the proportion of the cohort at age z that is alive and has not been
saved and let [ *(z) represent the proportion of the resuscitated who are alive at

age z. Since the proportion of the cohort surviving at age z is given by
U'(z) =l(z) +6L*(z) . (16)

the new life expectancy, e,, is given by

o
€0 =€+ 6fl"(z)dz . @av)
0
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The relative change in life expectancy is simply

@
S tHz)dz
0
=6 . (18)
S l(z)dz
0

Aey
€o

An expression for [ *(z) is readily developed. Assuming that the resuscitated
face the same force of mortality as those who have not been saved, the probability

of survival to age x for those whose lives were saved at age w is given by

- [ n(s)ds
P(T>z|w)=¢ ¥ , 19)

where T represents the time of death. Because the distribution density of w is

ww)l(w),

z
tH=z) =fP(T >z |w)u(w)l (w)dw
0

3
-fu(s ds =
(]

=e J pw)dw
0
= —(z)inl(z) . (20)

Substituting (20) in (18) yields

—f 1(z)Inl(z)dz
=6—2— =6H . (21)
S U(=z)dz
0

Ae,

€9

Note that the H in (21) denotes the same expression as Keyfitz’'s H in (12) and
(14). Hence, (21) provides a third interpretation of H as a measure of the propor-
tional increase in life expectancy if everyone's life were saved once, or alterna-
tively, as the proportional increase in a randomly chosen individual’s life span if
that individual’s life is saved. For Swedish males in 1982, # was .15 and e, was 72
years. Consequently, at 1982 period mortality rates, averting the death of a Swed-

ish male would give the resuscitated about 11 years of life expectancy.
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The formula for Aey/ eq in (21) holds exactly for any 4, whereas the analogous
formula in (12) only holds approximately, for small 4. The reason can be under-
stood by considering some simple diagrams. The model where death is only averted

once can be represented as:

ORIGINAL Su(z) THE
COHORT —% RESUSCITATED
(1 = 8)u(z) wz)

Individuals are all initially in the left box. A proportion § of those who would have
died are saved, but just once: the resuscitated experience the original force of
mortality p(z). On the other hand, the model where mortality rates are decreased

by § can be represented as:

THOSE THOSE Sua(z)
ORIGINAL Su(z) SAVED Su(z) SAVED e vee
POPULATION ONCE TWICE
@ - Su(z) A - Hulz) 1 - &Hulz)

Because the force of mortality in any state is (1 — §)u(z), the overall force of
mortality must also be (1 — §)u(xz). What the decomposition into an infinite stream

of states reveals is that a reduction in mortality rates may result in some people’s



lives being saved several times.

Let 78 represent the expected life years lived by an individual in the i’th

state, i.e., by an individual whose life has been saved ¢ and only t times:
@
18 = f pi(z)dz , (22)
0

where p‘(:) denotes the probability that a newborn individual is alive and in state
it at age z. Note that 18 is equal to e,, the original life expectancy before the li-

fesaving intervention. Clearly,
o _ 1 2. ...
€ =€+ Ty + Ty + . (23)

When & is small, it is unlikely that anyone will gain much life expectancy by being
saved more than once, i.e., the terms 73, 74, and so on are unimportant. (We prove

and expand on this intuitively plausible result elsewhere, in Vaupel and Yashin
(1985).) Hence,

eo Neg+ Ty . (24)
In the two-state model, where death is only averted once,
- 1
€p =€y + Ty . (25)

The similarity between (29) and (25) sheds light on why Keyfitz's A in (12) is identi-
cal to the H in (21).

It is sometimes easier to analyze the two-state model than the many-state
model. Since the two models have equivalent implications for life expectancy in
the limit for small 8, the two-state model may provide a convenient line of attack.
We exploit this, and the relationship between & and p discussed earlier, in several
subsequent derivations in this paper. We call the method involving the two-state
model the "second-chance" approach, in contrast with the comparative-statics ap-
proach and the dynamics approach. Although in this paper the second-chance ap-
proach is only used to analyze changes in life expectancy, it has more general ap-
plications to any situation, including marriage, divorce, abortion, unemployment,
the repair of equipment, etc., where changing some rate can be considered as

equivalent to giving some individuals a second chance.

Suppose, as above, that some proportion 8 of deaths are averted once. How
will the trajectory of mortality rates, as given by u(z), change? In brief, how does
saving lives affect mortality rates? Substituting (20) in (16), taking log deriva-



tives, and then simplifying yields:

{ 5 |
wz) = #(3-')[1 "I smi@)| (26)

At age zero, when [ (z) is one, the formula simplifies to
#(0) = u(0)[1 - 6] . (27)

As survivorship decreases, however, u'(x) approaches u(zx). Thus, reducing
deaths by some proportion & at all ages reduces the force of mortality by less than
6 at all ages after birth. The distribution of death times, as given by w(z)l(x),
changes to

wE(x)=wz)()1-6-4nl(z)] , (28)

so that a reduction in deaths by § leads to a new distribution of death times shifted
to older ages. Since death, as Shakespeare put it, "is certain to all”, it is clear
that a death averted today is an additional death tomorrow. The mathematics of
this adjustment is captured by (26) and (28).

IF THE RESUSCITATED ARE DIFFERENT

The formulas and calculations above assume that a resuscitated person would
face the same force of mortality over the rest of his or her life as a person whose
life had not been saved. To generalize the formula, it is useful to consider the fol-

lowing variation on the model discussed above:

ORIGINAL Su(z) THE
COHORT ! RESUSCITATED
1 - &)u(z) ut(z)

Note that now individuals who are saved experience a mortality trajectory given

by u*(z), rather than by (z). Let ¢ *(z) be the remaining life expectancy at age



z of the resuscitated:

@
et(z) = [ L1}(s)ds (29)
I
where
—fp.*(u Ydu
Lr(s) =e * : (30)

Because the density at age z of the distribution of (first) death is given by
M(z)l(z), the value of Ae, must be given by

[A]
Aeyg =6 [ u(z)l(z)e*(z)dz . (31)
0
Hence
Aey
=6H* , (32)
€o
where

[
[ wz)(z)e*(z)dz
0

HY = . (33)
S l(z)az

If u*(z) equals w(z), so that individuals are, in effect, saved from death once,
then H* equals H. If u*(z) equals (1 — §)u(z), so that death rates are reduced
uniformly for everyone, regardless of whether they have been resuscitated or not,

H* will be close in value to H as long as & is small. Consequently,

de,
?:_ =pH (34)
where
w
{n(z)l (z)e (z)dz
H = T iz . (35)

This expression for A, which is equal in value to Keyfitz's expression for H, was

derived by Vaupel (1986) directly from Keyfitz's formula. The expression clearly
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indicates how the effect of saving lives on life expectancy depends on the number
of deaths at various ages and on the number of additional years of life a resusci-

tated person might have.

SAVING THE OLD BEFORE THE YOUNG

As Vaupel (1986) discusses at length, if death rates are reduced by some pro-

portion & between ages a and 8, then for small &,

M0
e_o ﬁéﬂap . (36)

where
g
J u@)()e(z)az
aQ

Hap = ] . (37)
S t(z)dz
a

Correspondingly, if progress is being made at a rate p against mortality between

ages a and 8, then

deg

dt
€9

=pHyy . (38)

The values of H ap for various five year age categories for Swedish males and fe-
males in 1982 are given in Table 1. Remarkably, it is for males 70 to 75 and for fe-
males 75 to 80 that A as is largest. A one percent reduction in mortality in those
age categories would increase life expectancy at birth by more than twice as much

as a one percent reduction in mortality in infancy and early childhood.

AVERTING NEOPLASTIC DEATH IN VENICE

Let u.(z) represent the force of mortality from cancer, or more generally
any specified cause of death. Suppose that for some proportion § of individuals
who would have died from cancer, this (first) death from cancer is averted. Furth-
er suppose that these resuscitated individuals then have the same remaining life
expectancy as ordinary individuals. Using the second-chance approach and the

same kind of reasoning employed to derive formulas (31)-(33), it is clear that



-11 -

Table 1. Values of Ha, for Swedish males and females in 1982.

Age Period Males Females
0-5 .00853 .00763
5-10 .00085 .00068

10-15 .00060 .00060

15-20 .00226 .00079

20-25 .00289 .00120

25-30 00344 .00140

30-35 .00341 .00172

35-40 .00434 .00243

40-45 .00530 .00313

45-50 .00736 .00447

50-55 .00942 .00591

55-60 .01258 .00779

60-65 .01555 .00936

65-70 .01788 .01202

T70-75 .01869 .01464

75-80 .01719 .01679

80-85 .01282 .01650

85-90 .00675 .01201

90-95 .00231 .00545

95-100 .00055 .00142

H (i.e., total for .15270 .12622
all ages)

SOURCE: Vaupel (1986).

Ae, —s fuc(z)l(:)e(z)dz _
€9 - €9 -

SH, (39)

If 6 is small, it is unlikely that an individual would be saved from cancer death
more than once. Hence, (39) holds approximately for a reduction 8 in cancer mor-

tality rates as long as 6 is small. It follows that

de,y
dt
€o

=pH, . (40)

where p is the rate of progress in reducing cancer mortality
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—du (z)
dt

2 (2) (1)

p=

If cancer is independent of other causes of death, then it is possible to derive
an alternative expression for H, that is similar to Keyfitz’s formula for H in (13).
Let lc’(z) represent the proportion of people in the population who are alive at
age z and who have been saved once from cancer death (at any age prior to z). By
analogy to (20), letting w denote the age at which cancer death was averted, it fol-

lows that

I
tMz) = [ P(T >z |w)p (w)l(w)dw
0

-i(z)Inl (z) , (42)

where I (xz) can be interpreted as the survival function when cancer is the only

cause of death

~[ bets)ds
I (z)=e¢ ° : (43)

Hence, by the same logic used to derive (21),
S i(z)inl,_ (z)dz
0

H, = —— : (44)
S lz)dz
0

Keyfitz (1977) derives formula (44) using a different approach. In addition,
he presents some illustrative examples. For instance, for Italian females in 1964,
H, for deaths from neoplasms was 0.0300, compared with a total A of 0.1631. Thus,
a one percent reduction in cancer mortality would increase life expectancy at
birth by about three percent of one percent, or by about 8 days given Italian fe-
male life expectancy of 72.9 years in 1964. By way of comparison, A, for deaths
from cardiovascular diseases was 0.0564, almost twice as high as the A, for deaths
from cancer, whereas H_ for deaths from influenza, pneumonia and bronchitis was

0.0122, or less than half as great as the A, for deaths from cancer.
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MALES GO FIRST

Consider now a population that is structured according to race, sex, socio-
economic status, region or some other classification. Adopting the line of attack
of the second-chance approach, suppose that a proportion §; of the first deaths in
group i are averted. What will the effect be on the life expectancy of the entire
population? Letting uy(x), [;(z), and e;(x) denote the force of mortality, sur-

vivorship function, and remaining life expectancy at age z of the i -th group, then
deg = 8,1 (0) [ puy(z)l (x)ey(z)dz (45)
0

where m (0) is the initial proportion of the population in the group i. Hence,

Ae,
€o

and

deg
dt
€o

where

m (0) f 124 (21 (z)ey (x)dz
o= ——— (48)
fi(z)az
0

and

—d ()
dt

W— , allz . (49)

Py =
The U.S. male population, for example, might be classified as white and
nonwhite. The value of H; for U.S. nonwhite males in 1950 was about 0.038. So
reducing nonwhite male mortality by one percent would add about 9 days to the
overall U.S. male life expectancy of 65.5 years. By comparison, this reduction in
nonwhite male mortality would add about 75 days to nonwhite male life expectancy.
The difference is largely explained by the proportion of nonwhites at birth, about
12.6 percent.
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The U.S. population as a whole can be divided into male and female groups.
The value of H for males at 1980 mortality rates was 0.193, the value for females
was 0.155. If the two groups are given equal weight, then H for the entire popula-
tion is 0.179 and H; is 0.096 for males and 0.077 for females. Suppose there are
three alternative interventions. The first reduces male mortality by 2 percent,
the second reduces female mortality by 2 percent, and the third reduces total mor-
tality by 1 percent. The male strategy would save about 11 percent more life years
than the total strategy which, in turn, would save about 15 percent more life years

than the female strategy.

UP IN SHOKE

Suppose that a population consists of two subpopulations with age-specific
mortality rates uy(z) and u,(z), where uy(z) > uy(x) and where the two groups
might be residents of urban vs. rural areas, smokers vs. non-smokers, blue-collar
workers vs. white-collar workers, people in the south of a country vs. people in
the north, people who are overweight vs. people who are not, etc. How will
changes in the mix of the population between these two groups affect life expec-
tancy?

Consider an intervention that changes n(z), the proportion of the population
in the high-risk group, by some proportion § at all ages after some initial age z:

n(z)=@1 - &n(z) . (50)

It is convenient to consider age z, the age at "birth”, so that e, refers to remain-
ing life expectancy at age z, and z refers to years of age since z,. The force of

mortality for the population as a whole is given by

A(z) =1 = mz)uy(z) + m(z)uy(z) (51)
and
B(z) =1 - = O)mzNm(z) +A = Hn(z)uy(z) . (52)
Hence,
B(z) - Ax) = 6(uy () — A(z)) . (53)

It follows that
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2
J 8Giis)-hics s

(4]
Aeg= [ L(z)[e® -1ldz . (54)
0
If & is small,
Ae,
—_— 6”1 . (55)
€o
SO
deo
X = pH, (56)
0
where
9 11(1)
{ L(z)in @) dz
Hy = - , (57)
S l(z)az
0
I(z) =1 = m0))(z) + m(0)l(z) , (58)
and
-angzg
_ at
p= @ (59)

As an example of the use of these formulas, suppose that the population con-
sists of non-smokers and smokers, and that the population is being studied starting
at age 35 (so that e, refers to life expectancy at age 35). Further suppose that the
force of mortality for non-smokers is .001e-1F, (z being age minus 35), that the
force of mortality for smokers is twice as high, and that half the population smokes
at age 35. Remaining life expectancy for non-smokers in this case is about 40.8
years and remaining life expectancy for smokers about 34.2 years. Then H; turns
out to equal 0.077. If the proportion of the population that smokes is reduced by 1
percent, then life expectancy (at age 35) will increase by 0.077 percent, or by
about 11 days, given the average remaining life expectancy for the population as a

whole of 37.5 years.
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More generally, it is interesting to investigate the values of A, and of ex-
pected days of life saved, at different starting ages, i.e., at different ages of in-
tervention. Table 2 presents some sample calculations. Note that H, increases
with age: a reduction in smoking yields a greater proportional increase in life ex-
pectancy at the ages with the highest mortality rates. The absolute increase in life
expectancy, however, as measured by days added, falls off with age. Because it
falls off slowly, at least before age 55 or 65, it may be optimal to target anti-
smoking interventions toward older people—if it is relatively easier to induce old-
er smokers to quit. The calculations in Table 2 are merely illustrative, but some
empirical analysis of this sort could shed light on the effectiveness of targeting
various kinds of health programs toward individuals in different age classes.

Table 2. Values of H,, life expectancy, and days added to life expectancy if the
proportion of a population that smokes is reduced by one percent, at
various ages.

Days added to
total life expectancy
Remaining life expectancy (in years) for: if proportion that
smoke is reduced
Age H, Non-smokers Smokers Total population by one percent
35 .o77 40.8 34.2 375 10.5
45 .095 31.4 25.2 28.3 9.9
55 120 22.6 171 19.9 8.7
65 .150 14.9 10.5 12.7 7.0
75 .184 8.8 5.6 7.2 4.8
85 215 4.5 2.7 3.6 2.8

INHIBITING IMBIBITIONS

The results in the previous section can be generalized to the case where the
population consists of N subpopulations with age-specific mortality rates u;(z)

and in proportions m; (z), where

N
Y m(z)=1 (60)
1=1

and

_ N
az) = Y m(z)ug(z) . (61)

i=1
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As before, let the first subpopulation be the healthiest, u (z) < 4 (z) for all z

and for all ¢ > 1, and let §; denote the change in proportions at starting age 0:
m(z) = =-§)m(z) , i>1 , z=20 . (62)

Clearly,

N N
7"1'_(3):1_ 2 m(z)=m(z) + E §my(x) . (63)
1=2 1=2

For simplicity, assume
6;=6 , all i>1 . (64)
Then it is not difficult to show
B @) - =) = 8(uy(z) ~z)) . (65)

This formula is identical to (53). Consequently,

A‘o
- MSH, , forsmall § , (66)
0
and
deo
dt
=p}'{1 . (67)
€9

where H, is defined as before by (57) and

= (z)
ot

z) ,oalti>1 . (68)

p:

That H, is the same as before may, at first glance, seem puzzling but, on closer
thought, it is reasonable because the assumptions group the sub-populations into

two parts. Other formulas can be readily derived for other special cases.

As an illustration of the use of (66), consider a population of males with a high
prevalence of alcoholism. In particular, assume that 50 percent of the population
drink moderately or not at all, that 30 percent drink heavily, and that the remain-
Ing 20 percent drink very heavily. Further, assume that the heavy drinkers have
twice the mortality and the very heavy drinkers have four times the mortality of

the first group. Finally, as in the previous example, suppose that the population is
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being considered starting at age 35 and that the force of mortality follows a Gom-
pertz curve with a = 0.001 and b = 0.1 for the healthy subpopulation.

Remaining life expectancy for the three groups turns out to be 40.8, 34.2, and
27.9 years and, for the population as a whole, 36.2 years. The value of H, is 0.108;

a one percent reduction in the proportion of heavy and of very heavy drinkers,

would add two weeks to the population’s life expectancy.

STARTING STOPPING

Now consider a population that consists of various subpopulations, with indivi-
duals making transitions from one subpopulation to another, such that the transi-
tion rates are changing or can be changed. For instance, the population may con-
sist of smokers and non-smokers, with some smokers who stop and some non-
smokers who start. If either of these transitions could be influenced, what would
the effect be on life expectancy? This question is similar to the question con-
sidered in the previous two sections, except now the policy lever or control
parameter is not the proportion of the population who smoke, but the transition
rates between the non-smoking and smoking states. Changing the transition rates

will change the proportions and hence life expectancy.

For a cohort, the change in the proportion of individuals in state (or group) #

at age z is given by the equation:
dm,(x) N N —_—
T = ) Ny(@)m(z) + (2 Y m(2) g (z) — py(z)| . 7 €LN , (69)
it=1 i=1
where Xu (z) are the transition rates from state £ to state # at age z, with the ini-
tial proportions my (0) given.

In the simplest case of a two-state population with mortality rates u,(z) and
Mo(z) and transition rate A(z) from state 1 to state 2, the proportion m(z) of indi-
viduals in state 2 is the solution of the following equation

AEE) = r2(z)(gl) = py(=))

= (@) (ua(®) — 1y (z) + A (z)) + A (=) , (70)

with m(0) given. Let the rate of progress in reducing A(zx) be given by po(z):

_O(=x)

=0t
poz) = =55 (71)
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Straight-forward calculations show

30 [1(z) [ oy )W) — (W) W)e(y)dydz

dt 0 0
= , 72
€9 fl(z)dz (72)
where g (z) is the solution of the differential equation
92) = 2ni@)g (@) (k) = #(2))
= (@) Hp(z) —my(z) + A () —m(z) +1 , (73)

with ¢ (0) = 0. Note that this equation has to be solved together with equation (70)
for w(z). If the rate of progress in decreasing A(xz) does not depend on age, then
(72) reduces to

deg
dt
€

= pH, . (74)

where

[ k4
-f1@) [ (W) — @M (Y)e (v)dydz
HA = 0 0 . (75)

9
[i@)az
0

SIMULATION AS A SLEDGEHAMMER

Solving (75) for H, is not easy, since g(y) is the solution of a differential
equation (73) that depends on another differential equation (70). When mathemati-
cal solutions get as complicated as this, they may not only lose elegance but also
usefulness for either insight or computation. It may then be fruitful to take a dif-

ferent tack and rely on numerical, computer simulation.
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Consider, for instance, the following illustrative model:

A3y ()

pPINE D
Ao(x) 23 ,J
NON-SMOKERS 12 > SMOKERS - QUITTERS
-
A32(z)
(z) o(x) Ha(z)
(death)

The population is divided into three groups—non-smokers, smokers, and quitters.
The starting point of the analysis is age 10: z represents age minus 10. For non-

smoker's, the force of mortality is given by

(z) =.001e 1T (76)
for smokers it is

Mo(z) = 2y () 7
and for quitters,

La(z) =1.5u(z) . (78)

To begin with all individuals are non-smokers:
m(0) =1 , (79)
m(0) = m3(0) =0 . (80)
The transition intensities are
Aa(z) =.06e 1F (81)
Azs(z) = .02 05 | (82)

Ajp(z) = .570%F (83)
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Agy(z) =1 . (84)

These transition intensities imply:

-~ about 6 percent of non-smokers start smoking at age 10, about 2 percent at

age 20, and less than 1 percent at age 30;

-~ the proportion of smokers who quit smoking rises from about 2 percent per
year at age 10 to 10 percent per year at age 50 and 22 percent per year at
age 70;

-~ the recidivism rate of quitters resuming smoking falls from 50 percent per
year at age 10 to 33 percent at age 30 and 15 percent at age 70;

— 10 percent of quitters become non-smokers each year, implying that it takes
ten years, on average, for a former smoker to return to the health status of a

non-smoker.
The following formulas and approximations can be used to analyze this model:

-1

100 -~ A
eg =5+ ) e 7 , (85)
k=1
where
_ 3
rG)Y= Y m () . (86)
{=1
where
771(.7)

™y (j) = (87)

p1(F) +0o(F) + p43(i)]

where the p,(j), the proportions of the original cohort that are in state i at time

7. are given by
P1(7) =py(F-D[1 = r5(7 =1) —q1(J=D)] + p3(j -1)[1 = r33(J-1)] . (88)
PaAF) =po(F 1)1 —ry3(F 1) —q(F-1)] + p4(7 -1 — ry(F -1)] (89)
+pa(d —1)1 ~r3(F-1)]
P3(J) =p3(J 1)1 —r3.(F ~1) = rg(s —1) — q5(7 -1)] (90)
+P( D1 —rypa(f-1)] .

where
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rg(i) =1 —e e (91)

and

7,(7) =1 —e P (92)

With the parameter values given above, remaining life expectancy at age 10
turns out to be 61.5 years. The proportion of the surviving population that smokes
rises to 33 percent at age 30 and then falls off to 23 percent at age 50 and 6 per-

cent at age 70.

The model can be used to explore various kinds of interventions. If no one
ever smoked, or if the health hazards of smoking were eliminated, life expectancy
would increase by 1.4 years. If the rate at which people began to smoke were cut
in half, life expectancy would increase by 0.6 years. If the rate at which people
gave up smoking doubled, the gain would be 0.4 years. If the rate of recidivism
could be cut in half, 0.3 years would be gained; if recidivism could be eliminated,
the increase in life expectancy would be 0.7 years. If the duration of the lingering
excess risks faced by former smokers could be cut from an average of 10 years to
an average of 5 years, 0.3 years would be added to life expectancy. Finally, if the
excess risk of smoking were cut in half, so that u; equaled 1.5u, rather than 2u,

about half a year would be gained.

This example provides a simple illustration of how micro-simulation can shed
light on models that are difficult to analyze formally. More elaborate, more realis-

tic models for target analysis can be handled in the same general way.

CONCLUSION

The life expectancy of individuals (or units) in a heterogeneous population

can be increased by numerous strategies, including

— lowering overall mortality (or failure) rates,

-- reducing mortality rates in specific age categories,
-~ averting deaths,

-- lessening mortality rates from some cause,

— diminishing mortality rates in some region or for some population group,
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-~ decreasing the proportion of individuals in high-risk groups, and
-- changing transition rates between risk groups.

As the various formulas derived ln this paper illustrate, these changes affect life

expectancy in different ways.

The formulas, and various extensions or adaptations of them, may be useful to
policymakers in target analyses of the benefits of alternative interventions intend-
ed to save lives. In addition, the formulas describe the linkages that exist between
population structure and life expectancy. Individuals differ on numerous dimen-
sions that are related to mortality chances, including age, sex, race, socio-
economic status, occupation, place of residence, and personal behavior. A change

in population structure along any of these dimensions will change life expectancy.

Four different approaches were used to analyze the impact of a change in po-
pulation structure on life expectancy: the comparative-statics approach, the
dynamics approach, the method we called the '""second-chance’ approach, and com-
puter simulation. The first three approaches yield analytical solutions that are
general and that may facilitate insight. In the limit, when § is small, the three ap-
proaches produce equivalent formulas, so which approach to adopt is to some ex-
tent a matter of taste and convenience. The three approaches, however, may not
be equivalent when § is not small, and each approach may yield a different insight
and provide a different perspective. Computer simulation is useful in attacking
complex models that do not yield to the other three approaches. The answers pro-
duced by simulation pertain to particular realization of a model in which the coef-
ficients are specified: the answers are thus not general or elegant, but they are

answers.
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