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Life expectancy in a heterogeneous population can be  increased by lowering 
mortality rates or by averting deaths a t  different ages ,  f r o m  different causes, for 
different groups, as well as by changing t h e  proportions of individuals in various 
r isk groups, perhaps  by altering the  transition rates between groups. Under- 
standing how such changes in population s t ruc tu re  affects  life expectancy is  useful 
in evaluating al ternat ive lifesaving policies. 



Targetting Lifesaving: 
Demographic Ihkages Between 

Population Structure and Life Expectancy 

James W. Vaupel a n d  Anatoli  I. Yashin 

The individuals comprising the  typical population of men, mice, or machines 

face  differing mortality chances. This heterogeneity arises,  in pa r t ,  from indivi- 

dual character is t ics  tha t  change or can b e  changed, like age, behavior,  occupa- 

tion, or residence. Alteration of the  age  composition, occupational s t ruc tu re ,  or 

o t h e r  pa t te rn  of heterogeneity in a population, perhaps  as the  resul t  of some poli- 

cy intervention, will change the  distribution of mortality chances and hence 

change the  life expectancy of t h e  population. In this paper  w e  develop some formu- 

las  f o r  analyzing how various kinds of changes in population s t ruc tu re  will affect  

l ife expectancy. 

Change in life expectancy i s  a measure of t h e  number of y e a r s  of l ife saved 

(or  lost)  by an  alteration in population s t ruc tu re  and hence is  a useful measure for 

policy analysis. In par t icular ,  this  measure is appropriate  f o r  what might b e  

called t a rge t  analysis. If limited resources  are available f o r  lifesaving interven- 

tions, how should the  r e sou rces  b e  targeted? How effective would programs b e  

t ha t  are directed toward different  age  groups, diseases, r isk groups (like 

c igare t te  smokers), regions, e t c ?  A complete t a rge t  analysis would have to include 

consideration of how difficult i t  is to focus an  intervention on a par t icu la r  group 

and how resis tant  t he  group i s  to change. Nonetheless, understanding t h e  benefits 

of a change, if achieved, in l ife expectancy gained or life-years saved is  c lear ly  a 

key component of any t a rge t  analysis. 

In addition to such policy applications, t he  methods and formulas presented in 

this  pape r  are useful in gaining a deepe r  demographic understanding of how m o r -  

tality r a t e s ,  deaths,  r isk groups, and life expectancy are interrelated. How, for 

instance, do mortality rates change if some deaths are averted? 



Four different analytical approaches are used in t he  pape r  to analyze the 

demographic linkages between population s t ruc ture  and life expectancy: the 

comparative-statics approach ,  t he  dynamics approach, computer simulation, and a 

novel method tha t  w e  call t h e  "second-chance" approach. The p a p e r  provides some 

discussion and illustration of t h e  strengths,  weaknesses, and interrelationships 

among these alternative methods of demographic analysis. 

LIFE AND DEATH RATES 

Consider, f i r s t ,  age  structure as characterized by the  survivorship function 

where p ( z )  represents  t he  f o r c e  of mortality at age  I. (Formula (1) and the 

resul ts  tha t  follow can  b e  interpreted as pertaining to e i the r  period or cohort  cal- 

culations.) A change in p will change this age s t ruc tu re  and hence life expectancy 

at birth: 

where o is a n  age  beyond which no one lives. 

The effect of a change in p on e o  can be analyzed by e i ther  of two approaches. 

In t he  comparative-statics approach,  the t rajectory of p is assumed to change to 

p', where 

the  analyst relates t h e  change b(z)  to the  change in eo, perhaps  a s  measured by: 

In t he  dynamics approach,  t h e r e  i s  some r a t e  of change in p ( z  , t  ) ove r  time t : 

t he  analyst relates this  rate of change p(z  , t  ) to the  rate of change in eo(t ): 



Both approaches  are informative and w e  will consider both.  For  notational simpli- 

ci ty,  w e  will d r o p  t h e  argument t throughout and wri te  A x )  r a t h e r  than  CL(z,t) and 

e o  r a t h e r  than eo( t ) .  

If p ( z )  i s  constant  o v e r  a n  in terval  of time of length T, then  

Combining th is  r esu l t  with (3) yields t h e  relationship between p and  6: 

If 6 i s  small, th i s  r e d u c e s  t o  

Hence, r esu l t s  concerning p ( x )  can  be  derived from r e s u l t s  concerning 6 ( z )  and 

visa-versa: t h e  comparative-stat ics approach and t h e  dynamics a p p r o a c h  comple- 

ment each  o t h e r .  Note t h a t  p ( z )  can b e  a r b i t r a r i l y  l a rge ,  as long as T is  small 

enough. 

A comparative-stat ics re la t ionship  can  readily be der ived  from (1)-(4): 

s 

In t h e  c a s e  of a uniform change in mortality at a l l  ages ,  

b ( z )  = 6  , a l l z  , 

formula (9) can b e  rewr i t t en  as 

0 

For  small 6 ,  



Hence 

where 

In t h e  limit, a s  b approaches zero,  formula (12) holds exactly. Consequently, i t  i s  

apparen t  that  

where p is  t h e  uniform rate of progress  in reducing mortality rates: 

dt  
P = , all z . 

d z  

Thus, for small changes in & t h e  comparative-statics approach yields t h e  same 

formulas as t h e  dynamics approach.  Keyfitz (1977) derived (14) and noted tha t  H 

is  a measure of age  heterogeneity; a s  Demetrius (1979) indicated, H can b e  inter- 

p r e t ed  as the  entropy of t he  a g e  composition of t he  population. 

THE SECOND-CHANCE APPROACH 

Interventions to reduce  mortality (or  equipment failure) work by saving lives, 

i.e. by avert ing t he  scythe of death.  Suppose tha t  for some proportion 6 of a 

cohor t  (perhaps a synthetic per iod "cohort"), death is aver ted  once. Let 1 ( z )  

r ep re sen t  the proportion of t h e  cohor t  at age  z that is alive and has  not been 

saved and l e t  t + ( z )  r ep re sen t  t h e  proportion of t h e  resuscitated who are alive at 

a g e  z .  Since t h e  proportion of t h e  cohor t  surviving at age  z i s  given by 

t h e  new life expectancy, 8 ;  , i s  given by 



The relative change in life expectancy is simply 

An expression f o r  l + ( z )  is  readily developed. Assuming tha t  t he  resuscitated 

face the  same fo rce  of mortality as those who have not been saved, the  probability 

of survival to age  z f o r  those whose lives were saved at age  w i s  given by 

where T represents  t h e  time of death. Because the  distribution density of w i s  

CL(w)l(w), 

Substituting (20) in (18) yields 

Note tha t  t h e  H in (21) denotes t h e  same expression as Keyfitz's H in (12) and 

(14). Hence, (21) provides a th i rd  interpretation of H as a measure of t he  propor- 

tional increase in life expectancy if everyone's life were saved once, o r  alterna- 

tively, as t h e  proportional increase in a randomly chosen individual's life span if 

t h a t  individual's life is  saved. For Swedish males in 1982, H was .15 and so was 72 

years.  Consequently, at 1982 period mortality ra tes ,  averting the  death of a Swed- 

ish male would give t h e  resuscitated about 11 yea r s  of life expectancy. 



The formula fo r  beo/ eo in (21)  holds exactly f o r  any 6, whereas t h e  analogous 

formula in (12) only holds approximately, f o r  s m a l l  6. The reason can b e  under- 

stood by considering some simple diagrams. The model where death is  only aver ted  

once can be  represented as:  

Individuals are al l  initially in t h e  lef t  box. A proportion 6 of those who would have  

died are saved. but just once: t h e  resusci ta ted experience t he  original force of 

mortality A z ) .  On the  o the r  hand, t h e  model where mortality rates are decreased  

by 6 can be  represented as: 

T H E  
RESUSCITATED 

ORIGINAL 
COHORT 

Because t he  force of mortality in any state is  (1 - 6 ) p ( z ) ,  t h e  overal l  f o r c e  of 

mortality must also be  (1 - 6)p (z  ). What t he  decomposition into an  infinite stream 

of states reveals  is  that  a reduction in mortality rates may resul t  in some people's 
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lives being saved severa l  times. 

L e t  represent  t h e  expected life years  lived by a n  individual in t he  i ' t h  

s ta te ,  i.e., by a n  individual whose life has been saved i and only t times: 

where ( z )  denotes t h e  probability that  a newborn individual is alive and in state 

i at age  z. Note tha t  T: i s  equal to eo, the  original life expectancy before t he  11- 

fesaving intervention. Clearly, 

When 6 i s  small, i t  i s  unlikely tha t  anyone will gain much life expectancy by being 

saved more than once, i.e., t h e  terms T:, 703, and so on are unimportant. (We prove  

and expand on th i s  intuitively plausible result  elsewhere, in Vaupel and Yashh 

(1985).) Hence, 

In the  two-state model, where death is only averted once, 

The similarity between (29) and (25) sheds light on why Keyfitz's H in (12) i s  identi- 

cal to the  H in (21). 

I t  is  sometimes eas i e r  to analyze the  two-state model than the  many-state 

model. Since t h e  two models have equivalent implications fo r  life expectancy in 

t he  limit f o r  small 6, t he  two-state model may provide a convenient line of a t tack.  

W e  exploit this, and t h e  relationship between 6 and p discussed ear l ie r ,  in severa l  

subsequent derivations in th i s  paper.  W e  call the  method involving the  two-state 

model the  "second-chance" approach, in contrast  with t h e  comparative-statics ap- 

proach and the  dynamics approach. Although in this pape r  t h e  second-chance ap- 

proach is only used to analyze changes in life expectancy. i t  has  more general ap- 

plications to any situation, including marriage, divorce, abortion, unemployment, 

t he  r e p a i r  of equipment, etc. ,  where changing some rate can b e  considered as 

equivalent to giving some individuals a second chance. 

Suppose, as above, t ha t  some proportion 6 of deaths  are averted once. How 

will the  t ra jec tory  of mortality r a t e s ,  as given by p(z),  change? In brief, how does 

saving lives affect  mortality ra tes?  Substituting (20) in (16), taking log deriva- 



tives, and then simplifying yields: 

A t  a g e  zero, when I ( z )  i s  one, t h e  formula simplifies to 

A s  survivorship decreases ,  however, p'(z)  approaches p ( z ) .  Thus, reducing 

dea ths  by some proportion b at all ages  reduces the fo rce  of mortality by less than 

b at all ages  a f t e r  bir th .  The distribution of death times, as given by Az)L ( z ) ,  

changes to 

so t h a t  a reduction in deaths  by b leads to a new distribution of death times shifted 

to o lder  ages. Since death,  a s  Shakespeare put it. "is cer ta in  to all", i t  i s  c l e a r  

t ha t  a death aver ted  today i s  an additional death tomorrow. The mathematics of 

t h i s  adjustment is  captured by (26) and (28). 

IF THE RESUSCITATED ARE DWPERENT 

The formulas and calculations above assume tha t  a resusci ta ted person would 

face t h e  same force of mortality o v e r  t h e  rest of his or h e r  life as a person whose 

l ife had not been saved. To generalize t he  formula, i t  i s  useful to consider t h e  fol- 

lowing variation on  t h e  model discussed above: 

Note t ha t  now individuals who are saved experience a mortality t r a j ec to ry  given 

by p + ( z ) ,  r a t h e r  than by dz). Let r ' ( 2 )  be t h e  remaining life expectancy at a g e  

THE 
RESUSCITATED 

ORIGINAL 
COHORT 

. 

bp(z  * 



z of t h e  resuscitated: 

where 

Because t h e  density at age  z of t h e  distribution of (first)  death i s  given by 

I.l(z)l(z), t h e  value of beo must b e  given by 

Hence 

where 

If p + ( z )  equals A z ) ,  so tha t  individuals are, in effect ,  saved from death once, 

then H+ equals H. If p + ( z )  equals (1  - 6)p(z) ,  so t h a t  death rates are reduced 

uniformly for everyone, regard less  of whether they have been resuscitated or not, 

H+ will be  close in value to H as long as b i s  small. Consequently, 

where 

This expression for H, which is  equal in value to Keyfitzss expression f o r  H, was 

derived by Vaupel (1986) direct ly  from Keyfitz's formula. The expression clear ly  



indicates how the  effect  of saving lives on life expectancy depends on the number 

of deaths  at various ages and on the  number of additional years  of life a resusci- 

tated person might have. 

SAVING THE OLD BEBORg THE YOUNG 

A s  Vaupel (1986) discusses at length, if death rates a r e  reduced by some pro- 

portion 6 between ages a and @, then for small 6, 

where 

Correspondingly, if progress  is being made at a rate p against mortality between 

ages a and @, then 

The values of H a p  for various five yea r  age  categories for  Swedish males and f e  

males in 1982 are given in Table 1. Remarkably, i t  is f o r  males 70 t o  75 and fo r  f e  

males 75 to 80 tha t  H a p  is  largest.  A one percent  reduction in mortality in those 

age categories would increase life expectancy at bir th  by more than twice as much 

as a one percent  reduction in mortality in infancy and ear ly childhood. 

AVERTING NEOPLASTIC DEATH IN VENICE 

Let p C ( z )  r ep re sen t  the  force  of mortality from cancer ,  o r  more generally 

any specified cause of death. Suppose tha t  fo r  some proportion d of individuals 

who would have died from cancer ,  this ( f i rs t )  death from cancer  is averted. Furth- 

er suppose t h a t  these  resuscitated individuals then have the  same remaining life 

expectancy as ordinary individuals. Using the  second-chance approach and the  

same kind of reasoning employed to derive formulas (31)-(33), i t  is  c lear  tha t  



Table 1. Values of Ha,, f o r  Swedish males and females in 1982. 

Age Period Males Females 

H (i.e., total f o r  .I5270 
all ages) 

SOURCE: Vaupel (1986). 

If 6 is small, i t  is unlikely tha t  an  individual would be saved from cancer  death 

more than once. Hence, (39) holds approximately f o r  a reduction 6 in cancer  mor- 

tality r a t e s  as long as 6 i s  small. I t  follows tha t  

where p is the rate of progress  in reducing cancer  mortality 



If cancer  is independent of o the r  causes of death, then i t  is possible to derive 

an  alternative expression f o r  Hc tha t  is similar t o  Keyfitz's formula f o r  H in (13). 

Let l:(z) represent  t h e  proportion of people in the population who are alive at 

age  z and who have been saved once from cancer  death (at any age pr ior  to 2) .  By 

analogy to (20), letting w denote t he  age  at which cancer  death w a s  averted,  i t  fol- 

lows tha t  

where l c ( z )  can b e  in te rpre ted  as t he  survival function when cancer  is t he  only 

cause of death 

Hence, by the  same logic used to derive (21). 

Keyfitz (1977) der ives  formula (44) using a different apprmch.  In addition, 

he  presents  some il lustrative examples. For instance, fo r  Italian females in 1964, 

Hc f o r  dea ths  from neoplasms was 0.0300, compared with a total H of 0.1631. Thus, 

a one percent  reduction in cancer  mortality would increase life expectancy at 

b i r th  by about t h ree  percent  of one percent ,  o r  by about 8 days given Italian fe- 

m a l e  life expectancy of 72.9 y e a r s  in 1964. By way of comparison, Hc f o r  deaths  

from cardiovascular diseases w a s  0.0564, almost twice as high as the  Hc f o r  deaths  

from cancer ,  whereas Hc f o r  deaths from influenza, pneumonia and bronchitis w a s  

0.0122, o r  less than half as g r e a t  as the  Hc f o r  deaths  from cancer .  



MALES GO FLRST 

Consider now a population t h a t  is  s t ruc tured  according to r a c e ,  sex,  socio- 

economic status,  region or some o t h e r  classification. Adopting t h e  line of a t tack  

of t h e  second-chance approach ,  suppose t ha t  a proportion d i  of t h e  f i r s t  deaths  in 

group i are averted.  What will t h e  effect  be  on the  life expectancy of t h e  en t i r e  

population? Letting & (z), Li (z), and ei  (z) denote t he  f o r c e  of mortality, sur- 

vivorship function, and remaining life expectancy a t  age z of t h e  i -th group, then 

where mi (0) is  t he  initial proport ion of t h e  population in t he  group i .  Hence. 

and 

where 

and 

The U.S. male population, for example, might be  classified as white and 

nonwhite. The value of Hi f o r  U.S. nonwhite males in 1950 w a s  about 0.038. S o  

reducing nonwhite male mortality by one percent  would add about 9 days to t h e  

overa l l  U.S. male life expectancy of 65.5 years.  By comparison, this  reduction in 

nonwhite male mortality would add about 75 days to nonwhite m a l e  life expectancy. 

The difference is  largely explained by t h e  proportion of nonwhites at b i r th ,  about  

12.6 percent.  



The U.S. population as a whole can be divided into male and female groups. 

The value of H f o r  males at 1980 mortality r a t e s  w a s  0.193, the value f o r  females 

w a s  0.155. If the  two groups are given equal weight, then H f o r  the  ent i re  popula- 

tion is 0.179 and Hi i s  0.096 f o r  m a l e s  and 0.077 f o r  females. Suppose the re  are 

th ree  alternative interventions. The f i r s t  reduces m a l e  mortality by 2 percent ,  

the  second reduces female mortality by 2 percent,  and the  third reduces total  mor- 

tality by 1 percent .  The male s t ra tegy  would save about 11 percent  more life yea r s  

than the total s t ra tegy  which, in turn,  would save about 15 percent  more life yea r s  

than the female s t rategy.  

Suppose tha t  a population consists of t w o  subpopulations with agespec i f ic  

mortality rates k ( z )  and @(z), where @(z) > k ( z )  and where the t w o  groups 

might be  residents of urban vs. r u r a l  a reas ,  smokers vs. non-smokers, blue-collar 

workers vs. whi tecol la r  workers. people in the  south of a country vs. people in 

the  north, people who are overweight vs. people who a r e  not, etc.  How will 

changes in the  mix of t h e  population between these t w o  groups affect life expec- 

tancy? 

Consider an  intervention tha t  changes n(z), t he  proportion of the  population 

in the high-risk group, by some proportion 6 at all ages  a f t e r  s o m e  initial age  zo: 

I t  is  convenient to consider age  zo the  age at "birth", s o  tha t  eo  r e f e r s  to remain- 

ing life expectancy at a g e  zo and z r e f e r s  to years  of age since zo. The fo rce  of 

mortality f o r  t he  population as a whole is given by 

and 

Hence. 

I t  follows tha t  



If d is small, 

tit -- -pH, . 
e 0 

where 

and 

A s  an  example of t h e  use of these formulas, suppose tha t  t he  population con- 

s is ts  of non-smokers and smokers, and tha t  the  population is being studied s ta r t ing  

at age  35 (so tha t  e o  r e f e r s  to life expectancy at age 35). Fur ther  suppose tha t  t h e  

fo rce  of mortality f o r  non-smokers i s  .001s.~, ( t  being age  minus 35). t ha t  t he  

fo rce  of mortality f o r  smokers is twice as high, and tha t  half t h e  population smokes 

at age  35. Remaining life expectancy f o r  non-smokers in this  case  is about 40.8 

yea r s  and remaining life expectancy f o r  smokers about 34.2 years .  Then HI t u rns  

out to equal 0.077. If t h e  proportion of the  population tha t  smokes is reduced by 1 

percent ,  then life expectancy (at  age  35) will increase by 0.077 percent ,  or by 

about 11 days, given t h e  ave rage  remaining life expectancy f o r  t he  population as a 

whole of 37.5 years .  



More generally, i t  is interesting t o  investigate t he  values of HI, and of ex- 

pected days of life saved, at different starting ages,  i.e., at different ages of in- 

tervention. Table 2 presents  some sample calculations. Note tha t  H1 increases 

with age: a reduction in smoking yields a g r e a t e r  proportional increase in life ex- 

pectancy at the  ages with t h e  highest mortality rates. The absolute increase in life 

expectancy, however, as measured by days added, falls off with age. Because i t  

falls off slowly, at least  before a g e  55 or 65, it may be optimal to ta rge t  anti- 

smoking interventions toward o lder  people-if i t  is  relatively easier  to induce old- 

er smokers to quit. The calculations in Table 2 are merely illustrative, but some 

empirical analysis of this sort could shed light on the  effectiveness of targeting 

various kinds of health programs toward individuals in different age classes. 

Table 2. Values of HI, life expectancy. and days added to life expectancy if the  
proportion of a population tha t  smokes is reduced by one percent ,  at 
various ages. 

Days added to 
total life expectancy 

Remaining life expectancy (in years )  for:  if proportion tha t  
smoke is reduced 

Age H1 Non-smokers Smokers Total population by one percent  

35 .077 40.8 34.2 37.5 10.5 
45 .095 31.4 25.2 28.3 9.9 
55 .I20 22.6 17.1 19.9 8.7 
65 .I50 14.9 10.5 12.7 7.0 
75 .la4 8.8 5.6 7.2 4.8 
85 .215 4.5 2.7 3.6 2.8 

INHIBITING IM.BIBITIONS 

The resul ts  in t he  previous section can  b e  g e n e d i z e d  to the  case where the  

population consists of N subpopulations with age-specific mortality rates ~4 ( 2 )  

and in proportions ni ( z  ). where 

and 



A s  before,  l e t  t h e  f i r s t  subpopulation be  t h e  healthiest, %(z)  < & ( z )  for al l  z 

and f o r  all  t > 1, and l e t  6( denote t h e  change in proportions at s tar t ing age  0: 

Clearly, 

For simplicity, assume 

6 , = d  , all i > l  . 

Then i t  i s  not difficult ta show 

- ' 
~ ( 2 )  -22) = d(*(z) - 2 z ) )  

This formula is  identical ta (53). Consequently, 

he0  - w d H l  , f o r s m a l l d  , 
= 0 

and 

where HI is  defined as before  by (57) and 

8t 
P = , a l l i  > l  . 

~ ( 2  

That HI i s  t he  same as before may, at f i r s t  glance, seem puzzling but,  on c loser  

thought, i t  i s  reasonable  because t h e  assumptions group t h e  sub-populations into 

t w o  par t s .  Other formulas can be  readily derived f o r  o t h e r  special  cases. 

A s  an illustration of the  use of (66), consider a population of males with a high 

prevalence of alcoholism. In par t icular ,  assume tha t  50  percent  of t h e  population 

dr ink moderately or not at all, t ha t  30 percent  drink heavily, and tha t  t h e  remain- 

ing 20 percent  dr ink very  heavily. Fur ther ,  assume tha t  t h e  heavy dr inkers  have 

twice t h e  mortality and the  very  heavy dr inkers  have four  times t he  mortality of 

t h e  f i r s t  group. Finally, as in t h e  previous example, suppose t ha t  the  population i s  



being considered s tar t ing at age  35 and tha t  t h e  fo rce  of mortality follows a Gom- 

per tz  curve  with a = 0.001 and b = 0.1 for t h e  healthy subpopulation. 

Remaining l i fe  expectancy for the  t h r e e  groups tu rns  out to be  40.8, 34.2, and 

27.9 yea r s  and, f o r  t h e  population as a whole, 36.2 years.  The value of Hi is  0.108; 

a one percent  reduction in t h e  proportion of heavy and of very heavy dr inkers ,  

would add t w o  weeks to t h e  population's life expectancy. 

STARTING STOPPING 

Now consider a population tha t  consists of various subpopulations, with indlvi- 

duals making transit ions f r o m  one subpopulation to another ,  such tha t  t h e  transi- 

tion rates are changing or can be  changed. For  instance, t he  population may con- 

s is t  of smokers and non-smokers, with some smokers who s top and some non- 

smokers who start. If e i t he r  of these transit ions could b e  influenced, what would 

t h e  effect b e  on life expectancy? This question i s  similar to t h e  question con- 

sidered in t h e  previous t w o  sections, except  now t h e  policy lever  or control 

parameter  i s  not t h e  proportion of t h e  population who smoke, but t he  transit ion 

rates between t h e  non-smoking and smoking states. Changing t h e  transition rates 

will change t h e  proport ions and hence life expectancy. 

For  a cohor t ,  t h e  change in t h e  proportion of individuals in state (o r  group) j 

at age  r is  given by t h e  equation: 

where X u  ( r )  are t h e  transit ion rates from state i to state j a t  age  r ,  with t h e  ini- 

t ia l  proportions rrj (0) given. 

In t h e  simplest case of a two-state population with mortality rates h ( r )  and 

& ( r )  and transit ion rate X(r) from state 1 to state 2, U l e  proportion n ( r )  of indi- 

viduals in state 2 is  t h e  solution of t he  following equation 

with rr(0) given. Let t h e  rate of progress  in reducing X(r) be  given by p(r) :  



Straight-forward calculations show 

where q ( z )  is t he  solution of t h e  differential  equation 

with q (0)  = 0. Note tha t  th i s  equation has  to be  solved together  with equation (70) 

f o r  n ( z ) .  If t h e  rate of p rog re s s  in decreasing X(z) does not depend on age, then 

(72) reduces to 

where 

SIMULATION AS A SLEDGEHAMMER 

Solving (75) for HA i s  not easy, since q ( p )  i s  t h e  solution of a differential  

equation (73) t ha t  depends on another  differential equation (70).  When mathemati- 

ca l  solutions get  as complicated as this, they may not only lose elegance but a lso 

usefulness for e i t he r  insight or computation. It  may then be  fruitful to take  a dif- 

f e r e n t  tack and re ly  on numertcal, computer simulation. 



Consider,  f o r  ins tance,  t h e  following i l lus t ra t ive  model: 

N O N S M O K E R S .  

k(i: *(i: 1 *(1: 1 
(dea th )  

X12(z * 

The population i s  divided into t h r e e  groups-non-smokers. smokers,  and qu i t t e r s .  

The s t a r t i n g  point  of t h e  analysis i s  a g e  10: z r e p r e s e n t s  a g e  minus 10. F o r  non- 

smokers ,  t h e  f o r c e  of mortality i s  given by 

f o r  smokers  i t  i s  

S M O K E R S  

& 

and  f o r  qu i t t e r s ,  

& ( z )  = 1 . 5 h ( z )  . 

To begin with a l l  individuals are non-smokers: 

nl(0) = 1 , 

n2(0) = n3(0) = 0 . 

The t rans i t ion  intensit ies are 

xl,(z) = .o6r-Sh , 

=.028.O* , 

X32(2 ) = .5 8 -aoa , 

A Z 3 ( ~  ) 
C 

* 
X32(z 

QUITTERS 



These transition intensities imply: 

- about 6 percent  of non-smokers start smoking a t  age 10. about 2 percent  at 

age  20, and less  than 1 pe rcen t  at age  30; 

- t he  proportion of smokers who quit smoking r i ses  f r o m  about 2 percent  p e r  

yea r  at age  1 0  to 10 pe rcen t  p e r  yea r  at age  50 and 22 percent  p e r  y e a r  at 

age  70; 

- t he  recidivism rate of qu i t t e r s  resuming smoking falls from 50 percent  p e r  

yea r  at age  1 0  to 33 pe rcen t  at age  30 and 15 percent at age  70; 

- 1 0  percent  of qu i t te rs  become non-smokers each year. implying tha t  i t  takes 

ten years ,  on average ,  for a former  smoker to re turn  to t h e  health s ta tus  of a 

non-smoker. 

The following formulas and approximations can be  used to analyze this  model: 

where 

where 

where t h e  pi Cf), t h e  proport ions of t h e  original cohort  tha t  are in state i at time 

1 ,  are given by 

where 



and 

With the  parameter  values given above, remaining life expectancy a t  age  10 

tu rns  out t o  b e  61.5 years .  The proportion of the  surviving population that smokes 

r i ses  t o  33 percent  a t  age  30 and then falls off to 23 percent  at age  50 and 6 per -  

cent  a t  age  70. 

The model can  b e  used to explore  various kinds of interventions. If no one 

eve r  smoked, o r  if t h e  health hazards  of smoking were eliminated, life expectancy 

would increase  by 1.4 years.  If t h e  rate at which people began to smoke were cu t  

in half, life expectancy would increase by 0.6 years.  If t he  rate at which people 

gave up smoking doubled, the  gain would b e  0.4 years .  If the  rate of recidivism 

could b e  cu t  in half, 0.3 yea r s  would be  gained; if recidivism could be eliminated, 

the  increase in l ife expectancy would b e  0.7 years .  If t he  duration of the  lingering 

excess  r i sk s  faced by former smokers could b e  cu t  from an  average of 10 y e a r s  to 

an ave rage  of 5 yea r s ,  0.3 yea r s  would b e  added to life expectancy. Finally, if t h e  

excess  r isk of smoking were cut  In half, so tha t  ~ 1 2  equaled 1.5~. r a t h e r  than 2p, 

about half a y e a r  would b e  gained. 

This example provides a simple illustration of how micro-simulation can shed 

light on models t h a t  are difficult to analyze formally. More elaborate,  more realis-  

t i c  models f o r  t a r g e t  analysis can be  handled in t h e  same general way. 

CONCLUSION 

The life expectancy of individuals (or  units) in a heterogeneous population 

can b e  increased by numerous s t ra tegies ,  including 

- lowering overal l  mortality (or  failure) rates. 

- reducing mortality rates in specific a g e  categories ,  

- avert ing deaths ,  

- lessening mortality rates from some cause, 

- diminishing mortality rates in some region or f o r  some population group, 



- decreasing the  proportion of individuals in high-risk groups, and 

- changing transit ion rates between r isk groups. 

A s  the  various formulas derived ln this  pape r  i l lustrate,  these changes a f f ec t  life 

expectancy in different  ways. 

The formulas, and various extensions or adaptations of them, may be  useful to 

policymakers in t a rge t  analyses of the benefits of alternative interventions intend- 

ed  to save lives. In addition, t he  formulas descr ibe the linkages tha t  exist  between 

population s t ruc tu re  and life expectancy. Individuals differ  on numerous dimen- 

sions t h a t  are related to mortality chances. including age,  sex. race. s o c i e  

economic status.  occupation. place of residence. and personal behavior. A change 

in population s t r u c t u r e  along any of these  dimensions will change life expectancy. 

Four different approaches  were used to analyze t he  impact of a change in po- 

pulation s t rvc tu re  on life expectancy: t h e  comparative-statics approach. t h e  

dynamics approach.  t h e  method w e  called t h e  "second-chance" approach. and com- 

puter  simulation. The f i r s t  t h r e e  approaches  yield analytical solutions t ha t  are 

general and tha t  may facil i tate insight. In t he  limit. when d is  small. t he  t h r e e  ap- 

proaches produce equivalent formulas, so which approach to adopt is  to some ex- 

ten t  a matter of taste and convenience. The t h r e e  approaches.  however. may not 

b e  equivalent when d is  not small. and each approach may yield a different insight 

and provide a different  perspective.  Computer simulation is useful in attacking 

complex models t h a t  do  not yield to t h e  o t h e r  t h r e e  approaches.  The answers pro- 

duced by simulation per ta in  to part icular  realization of a model in which t h e  coef- 

ficients are specified: t h e  answers are thus not general o r  elegant. but  they are 

answers. 
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