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Abstract. Life expectancy in a heterogeneous population can be increased by lowering 
mortality rates or by averting deaths at different ages, from different causes, or for 
different groups, as well as by changing the proportions of individuals in various risk 

groups, perhaps by altering the transition rates between groups. Understanding how 
such changes in population structure affect life expectancy is useful in evaluating 
alternative lifesaving policies. 

R?sum?. Cibler la r?duction de la mortalit?. Relations d?mographiques entre structure de 
la population et esp?rance de vie 

Dans une population h?t?rog?ne, l'esp?rance de vie peut ?tre allong?e par rabaissement 
des taux de mortalit? ou en ?vitant certains d?c?s (? divers ?ges, de diverses causes ou 
dans divers groupes), ainsi qu'en changeant la fa?on dont la population est r?partie par 
groupes expos?s ? des risques diff?rents (par exemple en modifiant les probabilit?s de 
transition entre groupes). Pour ?valuer diff?rentes politiques de lutte contre la mortalit?, 
il est utile de comprendre comment de tels changements dans la structure de la 

population affectent l'esp?rance de vie. 

1. Introduction 

The individuals comprising the typical population of men, mice, or 

machines face differing mortality chances. This heterogeneity arises, in 
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part, from individual characteristics that change or can be changed, like 

age, behaviour, occupation, or residence. In this paper, we develop 
some formulae for analyzing how various kinds of changes in popula 
tion structure, resulting perhaps from policy interventions that alter 

survivorship patterns, employment patterns, etc., will change the distri 

bution of mortality chances and hence change life expectancy. 

Change in life expectancy is a measure of the number of years of Ufe 
saved (or lost) by an alteration in population structure and hence is a 

useful measure for policy analysis. In particular, this measure is ap 

propriate for what might be called target analysis. If limited resources 
are available for lifesaving interventions, how should the resources be 

targeted? How effective would programmes be that are directed toward 
different age groups, diseases, risk groups (like cigarette smokers), 
regions, etc? A complete target analysis would have to include consid 

eration of how difficult it is to focus an intervention on a particular 

group and how resistant the group is to change. Nonetheless, under 

standing the benefits of a change, if achieved, in life expectancy gained 
or life-years saved is clearly a key component of any target analysis. 

In addition to such policy applications, the methods and formulae 

presented in this paper are useful in gaining a deeper demographic 
understanding of how mortality rates, deaths, risk groups, and life 

expectancy are interrelated. How, for instance, do mortality rates 

change if some deaths are averted? 

Four different analytical approaches are used in the paper to analyze 
the demographic linkages between population structure and life ex 

pectancy: the comparative-statics approach, the dynamics approach, 

computer simulation, and a novel method that we call the 'second 

chance' approach. The paper provides some discussion and illustration 

of the strengths, weaknesses, and interrelationships among these alter 

native methods of demographic analysis. 

2. The comparative-statics and dynamics approaches 

Consider, first, age structure as characterized by the survivorship 
function 

/(x) 
= e"/oJtj (1) 
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where jti(x) represents the force of mortality at age x. [Formula (1) and 
the results that follow can be interpreted as pertaining to either period 
or cohort calculations.] A change in ?x will change this age structure 

and hence life expectancy at birth: 

eQ= / l(x) dx, (2) 

where co is an age beyond which no one lives. 

The effect of a change in n on e0 can be analyzed by either of two 

approaches. In the comparative-statics approach, the trajectory of ?x is 

assumed to change to ju', where 

M'(*)-(i-*(*))/?(*); (3) 

the analyst relates the proportional change 8(x) to the change in e0, 
perhaps as measured by 

eo eo 

In the dynamics approach, there is some proportional rate of change in 

/x(x, t) over time t: 

( v 
-d?x(x, t)/dt ,. ^- 

???ko 
; (5) 

the analyst relates this proportional rate of change p(x, t) to the rate 
of change in e0(t): 

de0(t)/dt 
?o(0 

" 

Both approaches are informative and we shall consider both. For 

notational simplicity, we shall drop the argument t throughout and 

write jtx(x) rather than ju(x, ?) and e0 rather than e0(t). 
If p(x) is constant over an interval of time of length T between the 

two mortality regimes /?' and jut, then 

Ju'(x)=M(x)e-r^. (6) 
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Combining this result with (3) yields the relationship between p and 5: 

, , -ln(l-?(x)) 
p(x) =-v 

T v;;. (7) 

If 8 is small, this reduces to 

pW-^. (8) 

Hence, results ncerning p(x) can be derived from results concerning 
8(x) and vice-versa: the comparative-statics approach and the dy 
namics approach complement each other. Note that for any specified 
value 8(x), p(x) can be arbitrary large, as long as T is small enough. 

A comparative-statics relationship can readily be derived from 

(l)-(4): 

eo [ l(x) dx 
Jo 

In the case of a uniform change in mortality at all ages, 

?(x) 
= 

8, aux. 

formula (9) can be rewritten as 

Ae0 jf'<*)[e-h,W-l]d* 
( l(x) dx 

(10) 

For small S, 

e-sln,(jc)-l?-?ln/(x). (11) 

Hence 

^ =8H, (12) 



J.W. Vaupek A.I. Yashin / Targetinglifesaving 339 

where 

- 
fl{x) In l(x) dx 

/T?-A_-. (13) 

/ l(x) dx 

In the limit, as 5 approaches zero, formula (12) holds exactly. Conse 

quently, it is apparent that 

*&-m, (i4) 

where p is the uniform rate of progress in reducing mortality rates: 

P- -d"<*>/d', all*. (15) 
/?(x) 

Thus, for small changes in /a, the comparative-statics approach yields 
the same formulae as the dynamics approach. Keyfitz (1977) derived 

(14) and noted that H is a measure of age heterogeneity; as Demetrius 

(1979) indicated, H can be interpreted as the entropy of the age 
composition of the population. See Pollard (1982) for use of the 

comparative-statics approach when changes in ?x are large. 

3. The second-chance approach 

3.1. The basic model 

Interventions to reduce mortality (or equipment failure) work by 
saving lives, i.e., by averting the scythe of death. Suppose that some 

proportion 8 of deaths at all ages are averted once. Let l(x) represent 
the proportion of the cohort at age x that is alive and has not been 

saved and let l+(x) represent the proportion of the resuscitated who 
are alive at age x. Since the proportion of the cohort surviving at age x 

is given by 

r(x) 
= 

/(x) + S/+(x), (16) 
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the new life expectancy, e'0, is given by 

e'o 
= 

e0 + s?l+(x)dx. (17) 
'o 

The relative change in life expectancy is simply 

. fV(x) dx 

dx 

An expression for /+(x) is readily developed. Assuming that the 

resuscitated face the same force of mortality as those who have not 

been saved, the probability of survival to age x for those whose lives 
were saved at age w is given by 

P(T>x\w) 
= 

c-Jitiis)d\ (19) 

where T represents age at death. Because the distribution density of w 

is ii(w)l(w), 

/+(*) 
= 

fXp(T> x | w)n(w)l(w) dw = c-foxKs)ds f\(w) 
dw 

- 
-/(x)ln/(x). (20) 

Substituting (20) in (18) yields 

A 
? 

j l(x) In /(x) dx 
f?o = 8_?o 

-_ = 8H (21) 
eo I l(x) dx 

Jo 

Note that the H in (21) denotes the same expression as Keyfitz's H 

in (12) and (14). Hence, (21) provides a third interpretation of H as a 

measure of the proportional increase in life expectancy if everyone's 

life were saved once, or alternatively, as the proportional increase in a 

randomly chosen individual's life span if that individual's life is saved. 

For Swedish males in 1982, H was 0.15 and eQ was 72 years. Conse 
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quently, at 1982 period mortality rates, averting the first death of a 

Swedish male would give the resuscitated about 11 years of life ex 

pectancy. 
The formula for AeQ/e0 in (21) holds exactly for any 5, whereas the 

analogous formula in (12) only holds approximately, for small 8. The 
reason can be understood by considering some simple diagrams. The 

model where death is averted only once can be represented as depicted 
in fig. 1. Individuals are all initially in the left box. A proportion 5 of 
those who would have died are saved, but just once: the resuscitated 

experience the original force of mortality /?(x). On the other hand, the 
model where mortality rates are decreased by 5 can be represented as 

depicted in fig. 2. Because the force of mortality in any state is 

(1 
? 

8)fi(x), the overall force of mortality must also be (1 
- 

8)ii(x). 
What the decomposition into an infinite stream of states reveals is that 

a reduction in mortality rates may result in some people's lives being 
saved several times. 

Let t? represent the expected life years lived by an individual in the 
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zth state, i.e., by an individual whose life has been saved / and only i 
times: 

r0'~ fV(x)dx, (22) 
'o 

where p\x) denotes the probability that a newborn individual is alive 
and in state i at age x. Note that t0? is equal to e0, the original life 

expectancy before the lifesaving intervention. Clearly, 

eo^o + To+Tb2* 
-. (23) 

When 8 is small, it is unlikely that anyone will gain much ufe 

expectancy by being saved more than once, i.e., the terms t02, t03, and 

so on are unimportant. [We prove and expand on this intuitively 

plausible result elsewhere, in Vaupel and Yashin (1985).] Hence, 

e'o~e0 + r?. (24) 

In the two-state model, where death is averted only once, 

?o^oW- (25) 

The similarity between (29) and (25) sheds light on why Keyfitz's H in 

(12) is identical to the H in (21). 
It is sometimes easier to analyze the two-state model than the 

many-state model. Since the two models have equivalent implications 
for Hfe expectancy in the limit for small 5, the two-state model may 

provide a convenient line of attack. We exploit this, and the relation 

ship between 8 and p discussed earlier, in several subsequent deriva 

tions in this paper. We call the method involving the two-state model 
the 'second-chance' approach, in contrast with the comparative-statics 

approach and the dynamics approach. Although in this paper the 
second-chance approach is used only to analyze changes in life ex 

pectancy, it has more general applications to any situation, including 

marriage, divorce, abortion, unemployment, the repair of equipment, 

etc., where changing some rate can be considered as equivalent to 

giving some individuals a second chance. 
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Suppose, as above, that some proportion 8 of deaths at all ages are 

averted once. How will the trajectory of mortality rates, as given by 

fi(x), change? In brief, how does saving Uves affect mortality rates? 

Substituting (20) in (16), taking log derivatives, and then simplifying 

yields: 

H'(x)=iu(x) 1 (26) 1-5 In/(x) 

At age zero, when /(x) is one, the formula simplifies to 

n'(0) 
= 

fi(0)[l-8). (27) 

As survivorship decreases, however, /?'(x) approaches jut(x). Thus, 

reducing deaths by some proportion 5 at all ages reduces the force of 

mortality by less than 8 at all ages after birth. The distribution of death 

times, as given by /x(x)/(x), changes to 

M(x)/'(x) 
= 

ii(x)/(x)[l 
- 5 - 5 In /(x)], (28) 

so that a reduction in deaths by 8 leads to a new distribution of death 
times shifted to older ages. Since death, as Shakespeare put it, 'is 
certain to all', it is clear that a death averted today is an additional 
death tomorrow. The mathematics of this adjustment is captured by 

(26) and (28). 

3.2. If the resuscitated are different 

The formulae and calculations above assume that a resuscitated 

person would subsequently face the same force of mortality as a person 

whose life had not been saved. To generalize the formula, it is useful to 
consider the following variation on the model discussed above (see fig. 
3). Note that now individuals who are saved experience a mortality 

trajectory given by i?*(x)9 rather than by jti(x). Let e+(x) be the life 

expectancy at age x of the resuscitated: 

e+(x) 
= 
fi:(s)ds, (29) 
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where 

/;(5) 
= e-'>+(")dw. (30) 

Because the density at age x of the distribution of (first) death is given 
by /i(x)/(x), the value of Ae0 must be given by 

?eQ 
= 8l ?x(x)l(x)e+(x) dx. 

Ja 

Hence 

where 

(31) 

(32) 

f ii(x)l(x)e+(x) dx 
-r__0_ 

?l(x) dx 
JQ 

H+ = 
(33) 

If /x+(x) equals ju(x), so that individuals are, in effect, saved from 
death once, then H+ equals H. If ju+(x) equals (1 

? 
?)/x(x), so that 

death rates are reduced uniformly for everyone, regardless of whether 

they have been resuscitated or not, H+ will be close in value to H as 

long as 8 is small. Consequently, 

de0/dt = 
pH> (34) 
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where 

/ ju.(x)/(x)e(x) dx 

H=^--?-. (35) 

/ /(x) dx 

This expression for H, which is equal in value to Keyfitz's expression 
for H, was derived by Vaupel (1986) directly from Keyfitz's formula. 

The expression clearly indicates how the effect of saving lives on Ufe 

expectancy depends on both the number of deaths at various ages and 

on the number of additional years of life a resuscitated person might 
have. 

4. Targeting lifesaving in selected sub-groups 

4.1. Reducing death rates in selected age groups 

As Vaupel (1986) discusses at length, if death rates are reduced by 
some proportion 8 between ages a and /?, then for small 5, 

^ ***,, (36) eo 

where 

fi(x)l(x)e(x) dx 

Ha?= 
u 

.? 
n- (37) 

i l(x) dx 
Jo 

Correspondingly, if progress is being made at a rate p against mortality 
between ages a and ?9 then 

?ep/dt 
?Z-=pHa?. (38) 

eo 

The values of 
Ha? for various five-year age categories for Swedish 

males and females in 1982 are given in table 1. Remarkably, it is for 
males 70 to 75 and for females 75 to 80 that H^ is largest. A one per 



346 /. W. Vaupel, A. I. Yashin / Targeting lifesaving 

Table 1 
Values of Ha? for Swedish males and females in 1982. 

Age period Males Females 

0- 5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 

90-95 

95-100 

H (Le., total for all ages) 

0.00853 
0.00085 
0.00060 
0.00226 
0.00289 
0.00344 
0.00341 

0.00434 
0.00530 
0.00736 
0.00942 
0.01258 
0.01555 
0.01788 
0.01869 
0.01719 
0.01282 
0.00675 
0.00231 
0.00055 

0.15270 

0.00763 
0.00068 
0.00060 
0.00079 
0.00120 
0.00140 
0.00172 
0.00243 
0.00313 
0.00447 
0.00591 
0.00779 
0.00936 
0.01202 
0.01464 
0.01679 
0.01650 
0.01201 
0.00545 
0.00142 

0.12622 

Source: Vaupel (1986). 

cent reduction in mortality in those age categories would increase Ufe 

expectancy at birth by more than twice as much as a one per cent 

reduction in mortality in infancy and early childhood. 

4.2. Averting deaths from selected causes 

Let fic(x) represent the force of mortality from cancer, or more 

generally any specified cause of death. Suppose that for some propor 
tion 8 of individuals who would have died from cancer, the (first) death 

from cancer is averted. Further suppose that these resuscitated individ 

uals then have the same remaining life expectancy as ordinary individu 

als. Using the second-chance approach and the same kind of reasoning 

employed to derive formulae (31)?(33), it is clear that 

' 
Mc(x)/(x)e(x)dx 

_^ _ ?jo_ = 5?L (39) 
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If 8 is small, it is unlikely that an individual would be saved from 
cancer death more than once. Hence, (39) holds approximately for a 
reduction 8 in cancer mortality rates as long as 5 is small. It follows 

that 

*&-A. (40) 

where p is the rate of progress in reducing cancer mortality 

-dpc(x)/dt 
P =-r~\? (41) 

If cancer is independent of other causes of death, then it is possible 
to derive an alternative expression for Hc that is similar to Keyfitz's 
formula for H in (13). Let /*(x) represent the proportion of people in 
the population who are alive at age x and who have been saved once 

from cancer death (at any age prior to x). By analogy to (20), letting w 
denote the age at which cancer death was averted, it follows that 

/+(*)- fp(T> x\w)iic{w)l(w) dw= ~l(x))n lc(x), (42) 

where /c(x) can be interpreted as the survival function when cancer is 
the only cause of death, 

/c(x)-e"/?^)d?. (43) 

Hence, by the same logic used to derive (21), 

fl(x) 
In /c(x) dx 

Hc= 
? 

r?- (44) 
/ l(x) dx 

Keyfitz (1977) derives formula (44) using a different approach. In 
addition, he presents some illustrative examples. For instance, for 

Italian females in 1964, Hc for deaths from neoplasms was 0.0300, 
compared with a total H of 0.1631. Thus, a one per cent reduction in 
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cancer mortality would increase ufe expectancy at birth by about three 

per cent of one per cent, or by about eight days given Italian female life 

expectancy of 72.9 years in 1964. By way of comparison, Hc for deaths 
from cardiovascular diseases was 0.0564, almost twice as high as the Hc 
for deaths from cancer, whereas Hc for deaths from influenza, pneumo 
nia and bronchitis was 0.0122, or less than half as great as the Hc for 
deaths from cancer. 

4.3. Averting deaths in high-risk groups 

Consider now a population that is structured according to race, sex, 

socio-economic status, region or some other classification. Adopting 
the line of attack of the second-chance approach, suppose that a 

proportion 8? of the first deaths in group i are averted. What will the 
effect be on the Ufe expectancy of the entire population? Letting j?tf-(x), 
/,(x), and e?(x) denote the force of mortality, survivorship function, 
and remaining life expectancy at age x of the ith group, then 

Ae0 
= 

8iTrX0)fvi{x)li{x)ei{x) dx, (45) 

where ^?(0) is the initial proportion of the population in the group /. 

Hence, 

%*-*,*, (46) 

and 

^-P,*? (47) 

where 

^(0)f/x,(*)/,(xk(*)dx 
Hi =-4l_- (4g) 

/ l(x) dx 
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and 

P,- 
-?f j78'. 

aUx. (49) 

The US maie population, for example, might be classified as white 
and non-white. The value of if, for US non-white males in 1950 was 
about 0.038. So reducing non-white male mortality by one per cent 

would add about nine days to the overall US male Ufe expectancy of 
65.5 years. By comparison, this reduction in non-white male mortality 

would add about 75 days to non-white male life expectancy. The 
difference is largely explained by the proportion of non-whites at birth, 
about 12.6 per cent. 

The US population as a whole can be divided into male and female 

groups. The value of H for males at 1980 mortality rates was 0.193, the 

value for females was 0.155. If the two groups are given equal weight, 
then H for the entire population is 0.179 and H? is 0.096 for males and 
0.077 for females. Suppose there are three alternative interventions. The 

first reduces male mortality by two per cent, the second reduces female 

mortality by two per cent, and the third reduces total mortality by one 

per cent. The male strategy would save about 11 per cent more years of 

life than the total strategy which, in turn, would save about 15 per cent 
more years of Ufe than the female strategy. 

5. Targeting lifesaving by changing high-risk behaviour 

5.1. Reducing the proportion in high-risk groups 

A. Two groups 

Suppose that a population consists of two subpopulations with 

age-specific mortality rates jux(x) and /?2(x), where ?x2(x) > Mi(*) and 
where two groups might be residents of urban vs. rural reas, smokers 
vs. non-smokers, blue-collar workers vs. white-collar workers, people in 
the south of a country vs. people in the north, people who are 

overweight vs. people who are not, etc. How will changes in the 
distribution of the population between these two groups affect Ufe 

expectancy? 
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Consider an intervention that changes ?r(x), the proportion of the 

population in the high-risk group, by some proportion 5 at all ages 
after some initial age x0: 

*'(*) 
= 

(l-fi)ir(jc). (50) 

It is convenient to consider age x0 as the age at 'birth', so that eQ 
refers to remaining life expectancy at age x0 and x refers to years of 

age since x0. The force of mortality for the population as a whole is 

given by 

Ji(x) 
= 

(1 
- 

7r(x))ii!(x) + tt(x)ii2(x) (51) 

and 

?5'(x) 
- 

(1 
- 

(1 
- 

?MjOW*) + (1 
- 

d)*(x)rL2(x). (52) 

Hence, 

W(x) 
~ 

/*(*) 
= 

8(Hi(x) 
- 

/*(*))- (53) 

It follows that 

AeQ 
? 

r/?jc)^?'1??-?'? 
d* - 

il dx. (54) 

If 8 is small, 

^-??a, (55) 

so 

^-PH? (56) 

where 
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fl{x) 
In [/i(jc)//(x)] dx 

Hr 
= 4- -, (57) 

/ l(x) dx 

l(x) 
= (1 

- 
?(O))/^*) + ir(0)/2(jt), (58) 

and 

-dir(x)/dt 
P 

= 

ir{x) 
(59) 

As an example of the use of these formulae, suppose that the 

population consists of non-smokers and smokers, and that the popula 
tion is being studied starting at age 35 (so that eQ refers to life 

expectancy at age 35). Further suppose that the force of mortality for 
non-smokers is O.OOle01* (x being age minus 35), that the force of 

mortality for smokers is twice as high, and that half the population 
smokes at age 35. Remaining life expectancy for non-smokers in this 

case is about 40.8 years and remaining life expectancy for smokers 

about 34.2 years. Then H^ turns out to equal 0.077. If the proportion 
of the population that smokes is reduced by one per cent, then life 

expectancy (at age 35) will increase by 0.077 per cent, or by about 11 

days, given the average remaining Ufe expectancy for the population as 
a whole of 37.5 years. 

More generally, it is interesting to investigate the values of Hv and 
of expected days of Ufe saved, at different starting ages, i.e., at different 

ages of intervention. Table 2 presents some sample calculations. Note 

that /fj increases with age: a reduction in smoking yields a greater 

proportional increase in Ufe expectancy at the ages with the highest 
mortaUty rates. The absolute increase in life expectancy, however, as 

measured by days added, falls off with age. Because it faUs off slowly, 
at least before age 55 or 65, it may be optimal to target anti-smoking 
interventions toward older people 

- if it is easier to induce older 

smokers to quit. The calculations in table 2 are merely ?lustrative, but 

some empirical analysis of this sort could shed Ught on the effective 

ness of targeting various kinds of health programmes toward individu 

als in different age classes. 
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Table 2 
Values of if3, life expectancy, and days added to life expectancy if the proportion of a population 
that smokes is reduced by one per cent, at various ages. 

Age jffj Remaining life expectancy (in years) Days added to 

Non-smokers Smokers Total population 
total Me ?P?*??* 
if proportion that 

smoke is reduced 

by one per cent 

35 0077 40? 342 TL5 105 
45 O095 31.4 25.2 28.3 9.9 

55 O120 22.6 17.1 19.9 8.7 
65 0.150 14.9 10.5 12.7 7.0 

75 0.184 8.8 5.6 7.2 4.8 

85 0.215 4.5 2.7 3.6 2.8 

B. More than two groups 
The results in the previous section can be generalized to the case 

where the population consists of N subpopulations with age-specific 
mortaUty rates ?i^x) and in proportions ^(x), where 

2>,(*)-l (60) 
?-1 

and 

m(*)-??i(*)j?,(*). (61) 

As before, let the first subpopulation be the healthiest, Mi(x) < /?;(x) 
for all x and for all i > 1, and let 5, denote the change in proportions 
at starting age 0: 

77/(x) 
= 

(l-5/)7T/(x), i>l, x^0. (62) 

Clearly, 

*i(*) -1 - 
E ?,(*) 

- >(*) + I Vi (*) (63) 
1-2 i-2 
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For simp?city, assume that 

8? 
= 

8, all/>l. (64) 

Then it is not difficult to show that 

p{x)-?L(x)-B{to(x)-?i{x)). (65) 

This formula is identical to (53). Consequently, 

^?Stfj for small?, (66) 

and 

**& -*? (67) 

where H^ is defined as before by (57) and 

p 
=-T-^-> 

aUi>l. 68 
*(x) 

That Hx is the same as before may, at first glance, seem puzzling but, 
on closer thought, it is reasonable because the assumptions group the 

sub-populations into two parts. Other formulae can readily be derived 
for other special cases. 

As an illustration of the use of (66), consider a population of males 
with a high prevalence of alcoholism. In particular, assume that 50 per 
cent of the population drink moderately or not at all, that 30 per cent 
drink heavily, and that the remaining 20 per cent drink very heavily. 
Further, assume that the heavy drinkers have twice the morta?ty and 
the very heavy drinkers have four times the mortaUty of the first group. 

Finally, as in the previous example, suppose that the population is 

being considered starting at age 35 and that the force of mortaUty 
follows a Gompertz curve with a = 0.001 and b = 0.1 for the healthy 

subpopulation. 

Remaining life expectancy for the three groups turns out to be 40.8, 

34.2, and 27.9 years and, for the population as a whole, 36.2 years. The 
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value of Hx is 0.108; a one per cent reduction in the proportion of 

heavy and of very heavy drinkers, would add two weeks to the 

population's Ufe expectancy. 

5.2. Changing the rate of transition to low-risk behaviour 

Now consider a population that consists of various subpopulations, 
with individuals making transitions from one subpopulation to another, 
such that the transition rates are changing or can be changed. For 

instance, the population may consist of smokers and non-smokers, with 

some smokers who stop and some non-smokers who start. If either of 

these transitions could be influenced, what would the effect be on Ufe 

expectancy? This question is similar to the question considered in the 

previous two sections, except that the po?cy lever or control parameter 
is not the proportion of the population who smoke, but the transition 
rates between the non-smoking and smoking states. Changing the 

transition rates wiU change the proportions and hence Ufe expectancy. 
For a cohort, the change in the proportion of individuals in state (or 

group) j at age x is given by the equation 

N "I 

Y,*i(xhi(x)--iij(x)\9 /-i J 

ye?j?, (69) 

where 
X/y(x) 

are the transition rates from state i to state j at age x, 

with the initial proportions wy(0) given. 
In the simplest case of a two-state population with mortaUty rates 

]Lt1(x) and M2(x) an<i transition rate X(x) from state 1 to state 2, the 

proportion n(x) of individuals in state 2 is the solution of the foUowing 
equation: 

?x 
= 

^2(*)(m2(*) 
- 

Pi(x)) 
~ 

v(x)(?i2(x) 
- 

Mi(*) + A(x)) 

d"j{x)-?KAx)?M 
+ *j(x) dx 

+\(x). (70) 
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with m(0) given. Let the rate of progress in reducing \(x) be given by 
p(x): 

P<*>-^fP. 
<*) 

Straightforward calculations show that 

a* /At fl(x)fXp(y)^2(y)-^(y))Hy)q(y)dydx de^dl^Jo-h- - 
(72) eo f l{x) dx 

Jo 

where q(x) is the solution of the differential equation 

-^- 
= 

27r(x)q(x){[i2(x) 
- 

?^(x)) 
- 

q(x)(?i2(x) 
- 

p^x) + \(x)) 

-w{x) + l. (73) 

with q(Q) 
= 0. Note that this equation has to be solved together with eq. 

(70) for ir{x). If the rate of progress in decreasing X(x) does not 

depend on age, then (72) reduces to 

de0/dt 
?;-= PHX, (74) 

where 

-fl{x)f{li1{y)-H{y))\{y)q{y)dydx 
"a?4-4-p- (75) 

/ l(x) dx 

6. Resort to simulation 

Solving (75) for Hx is not easy, since q(y) is the solution of a 
differential equation (73) that depends on another differential equation 
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NON-SMOKERS 
Xi2<*) 

SMOKERS 
X23(x) 

X32(x) 

QUITTERS 

? 

(death) 

? 

M3OO 

Fig. 4. 

(70). When mathematical solutions become as this, they may not only 
lose elegance but also usefulness for either insight or computation. It 

may then be fruitful to take a different tack and rely on numerical, 
computer simulation. 

Consider, for instance, the foUowing illustrative model (fig. 4). The 

population is divided into three groups 
- 

non-smokers, smokers, and 

quitters. The starting point of the analysis is age 10: x represents age 
minus 10. For non-smokers, the force of mortaUty is given by 

/t^jc) 
= 0.001 e01*, 

for smokers it is 

/i2(x) 
= 

2/i1(x), 

and for quitters, 

/i3(x) 
= 

1.5^(x). 

At the start aU individuals are non-smokers: 

*i(0)?l, 

*2(0) 
= 

*r3(0) 
= 0. 

(76) 

(77) 

(78) 

(79) 

(80) 
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The transition intensities are 

X12(x) 
= 0.06 e-0-1*, (81) 

\23(x) 
= 

0.02e005x, (82) 

X32(x) 
= 

0.5e-?^, (83) 

\31(x) 
= 0.1. (84) 

These transition intensities imply that: 

- about six per cent of non-smokers start smoking at age 10, about two 

per cent at age 20, and less than one per cent at age 30; 
- the proportion of smokers who quit smoking rises from about two 

per cent per year at age 10 to 10 per cent per year at age 50 and 22 

per cent per year at age 70; 
- the recidivism rate of quitters resuming smoking faUs from 50 per 

cent per year at age 10 to 33 per cent at age 30 and 15 per cent at 

age 70; 
- 10 per cent of quitters become non-smokers each year, implying that 

it takes ten years, on average, for a former smoker to return to the 

health status of a non-smoker. 

The foUowing formulae and approximations can be used to analyze 
this model: 

100 

e0 
= 0.5+ Ee-^W), (85) 

where 

MO)=?*,(y>,0), (86) 
/-l 

where 

/ .s 
_P?J)_ /o-v 

*ij)"lrtU)+*U)+r,U)V 
(8) 
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where the pt{j), the proportions of the original cohort that are in state 
i at time j, are given by 

P?J)=P?J-^-r12{j~l)-q1{j-\)) 

+Jp30'-l)[l-/-3iO-l)], (88) 

P2?)-??-l)[l-'?0'-l)-ft(7-l)] 

+JPiO-l)[l-^0'-l)] +ft(;'-l)[l-'a()-l)]. (89) 

p?j) =Ps(j 
- 

i)!1 
- 

r3i(; -1) 
- 

^32 (7 -1) 
- 

93(7 -1)] 

+?0'-l)[l-1a(y-l)l, (90) 

where 

'*( J) 
= 1 - e-x<*0) (91) 

and 

9/.(y) 
= l-e-^>. (92) 

With the parameter values given above, remaining life expectancy at 

age 10 is 61.5 years. The proportion of the surviving population that 
smokes rises to 33 per cent at age 30 and then falls off to 23 per cent at 

age 50 and six per cent at age 70. 
The model can be used to explore various kinds of interventions. If 

no one ever smoked, or if the health hazards of smoking were eliminated, 

Ufe expectancy would increase by 1.4 years. If the rate at which people 
began to smoke were cut in half, Ufe expectancy would increase by 0.6 

years. If the rate at which people gave up smoking doubled, the gain 
would be 0.4 years. If the rate of recidivism could be halved, 0.3 years 

would be gained; if recidivism could be eliminated, the increase in life 

expectancy would be 0.7 years. If the duration of the lingering excess 

risks faced by former smokers could be cut from an average of 10 years 
to an average of five year, 0.3 years would be added to life expectancy. 

FinaUy, if the excess risk of smoking were cut in half, so that fi2 

equaUed 1.5/x, rather than 2/i, about half a year would be gained. 
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This example provides a simple ?lustration of how micro-simulation 
can shed Ught on models that are difficult to analyze formally. More 

elaborate, more reaUstic models for target analysis can be handled in 

the same general way. 

7. Conclusion 

The Ufe expectancy of individuals (or units) in a heterogeneous 
population can be increased by numerous strategies, including 

- 
lowering overall mortaUty (or failure) rates, 

- 
reducing mortaUty rates in specific age categories, 

- 
lessening mortaUty rates from some cause, 

- 
diminishing mortaUty rates in some region or for some population 

group, 
- 

decreasing the proportion of individuals in high-risk groups, and 
- 

changing transition rates between risk groups. 

As the various formulae derived in this paper iUustrate, these changes 
affect life expectancy in different ways. 

The formulae, and various extensions or adaptations of them, may 
be useful to poUcy-makers in target analyses of the benefits of alterna 

tive interventions intended to save Uves. In addition, the formulae 

describe the linkages that exist between population structure and life 

expectancy. Individuals differ on numerous dimensions that are related 

to mortaUty chances, including age, sex, race, socio-economic status, 

occupation, place of residence, and personal behaviour. A change in 

population structure along any of these dimensions will change life 

expectancy. 
The first three approaches we used - the comparative-statics, the 

dynamics, and the 'second-chance' approaches 
- 

yield analytical solu 

tions that are general and that may faciUtate insight. In the Umit, when 
5 is small, the three approaches produce equivalent formulae, so which 

approach to adopt is to some extent a matter of taste and convenience. 

The three approaches may not be equivalent, however, when 8 is not 

small, and each approach may yield a different insight and provide a 
different perspective. The fourth approach 

- 
computer simulation - is 

useful in attacking complex models that do not yield to the other three 
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approaches. The answers produced by simulation pertain to particular 
realizations of a model in which the coefficients are specified: they are 

thus not general or elegant, but they are answers. 
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