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Abstract—Methods are presented which produce Maximum Likelihood Esti-
mates (MLE) of the degree of heterogeneity in individual mortality risks un-
der a variety of assumptions about the age trajectory of those mortality risks.
With these estimates of the degree of population heterogeneity it is possible
to adjust comparisons of mortality risks across populations for the effects of
population heterogeneity, differential mortality selection, and different age
trajectories of the force of mortality. These methods are demonstrated by ap-
plying a variety of standard assumptions about the age trajectory of the force
of mortality to the analysis of a broad range of cohort mortality data for the
U.S. and Swedish populations. The estimates of the degree of heterogeneity,
produced under all of the selected force of mortality models, consistently in-
dicated a considerable degree of heterogeneity in mortality risks.

INTRODUCTION

In a previous paper (Vaupel et al,,
1979a) a model was presented which illus-
trated the bias produced in life table pa-
rameters by the operation, over age, of
systematic mortality selection on a hetero-
geneous population. The effects of such
bias on a variety of different types of mor-
tality analyses were discussed. Two im-
portant types of mortality analyses—com-
parison of the mortality experience of
different populations, or of different birth
cohorts for the same population—are par-
ticularly subject to the bias of population
heterogeneity since the comparisons could
involve populations under very different
mortality conditions. Maximum likeli-
hood (ML) estimation procedures which
deal with this bias are presented in this
paper. These procedures are designed to
permit comparisons of the mortality expe-

rience across cohorts within the same
population by explicitly estimating the
magnitude of heterogeneity in that popu-
lation while simultaneously adjusting the
comparisons for that level of hetero-
geneity.

These procedures are applied to com-
parisons of the mortality experience
across successive cohorts of males and fe-
males in the U.S. and Swedish popu-
lations. Estimates of the magnitude of
population heterogeneity in these popu-
lations are produced under a variety of
assumptions about the age trajectory of
the force of mortality for individuals. The
estimates of heterogeneity under all of the
models selected were consistent in in-
dicating a fairly high degree of population
heterogeneity.

The remainder of this paper is orga-
nized into three sections. In the methods
section we (a) present a mathematical
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model of population heterogeneity and
mortality selection, (b) discuss procedures
for estimating the degree of heterogeneity
and (c) present a variety of models of the
age trajectory of individual mortality risks
that will be employed in the analysis. In
the second section we discuss the prepara-
tion of the cohort mortality data. Finally,
in the results section we both review the
estimation of the degree of population
heterogeneity from the cohort data and
evaluate that degree of heterogeneity for
our perception of individual mortality
risks.

METHODS

This section is organized into three
parts. First, we briefly review the model
presented in Vaupel et al. (1979a), gener-
alize the results presented in that paper,
and establish necessary definitions and
mathematical notation. Second, the likeli-
hood function for the heterogeneity
model presented in Vaupel et al. (1979) is
derived so that maximum likelihood pro-
cedures (see Appendix) can be used to
generate (a) parameter estimates, (b)
asymptotic confidence intervals for our
parameter estimates, and (c) likelihood
chi-squared tests for hierarchially struc-
tured models. Third, the models of the
age trajectory of individual mortality risks
employed in generating estimates of pop-
ulation heterogeneity are presented.

Heterogeneous Population Mortality
Model

The heterogeneous population mortal-
ity model presented in Vaupel et al.
(1979a) introduced the concept of individ-
ual “frailty” into life table computations.
This was operationalized by defining an
individual’s frailty to represent the pro-
portional increase or decrease in the force
of mortality operating on that individual
as compared to some standard force of
mortality. For convenience, this standard
force of mortality was scaled so that it was
equal to the average force of mortality
faced by the cohort at birth. It was further
assumed that each individual’s relative
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frailty remained constant throughout his
or her life. These assumptions led directly
to the concept of the “standard individ-
ual,” defined to be an individual who, at
each age x, is subjected to the standard
force of mortality specific to age x. Thus,
the standard individual is assumed to
have a relative frailty of unity or one
(1.0).

To deal with individual differences in
the force of mortality, we define u(x, y, 2)
to be the force of mortality for an individ-
ual in population group i, at exact age x,
at some instant in time y, and with a rela-
tive frailty z. Under the assumption that
an individual’s frailty represents the pro-
portional increase or decrease in the stan-
dard force of mortality, it follows that

pdx, ¥, 2) = zpfx, ), (la)

where p(x, y) is the standard force of
mortality in population group i, at exact
age x, at time y. For simplicity, subscripts
and arguments will be suppressed
throughout this paper whenever they are
not essential to convey meaning. Specifi-
cally, the symbols i (population), x (age),
and y (time) will be left implicit in most of
the following. Thus equation (la) is taken
to be equivalent to:

wz) = zp, (1b)

where p. is the standard force of mortality.

Because different individuals are as-
sumed to have different levels of frailty, it
follows from (1b) that the members of
each cohort will, at any given age, face
differential mortality risks. This implies
that the distribution of frailty in the co-
hort will change over time as mortality se-
lectively removes the more frail cohort
members. This process of mortality selec-
tion also implies that the cohort survivors
at any given age will not represent a ran-
dom sample of the cohort survivors at
some earlier age (see Figures 1 and 2). In-
stead, these cohort survivors represent a
sample of the earlier survivors with sys-
tematically lower frailty.

The extent of the selection for lower
frailty can be determined if the propor-
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tion of survivors from the initial observa-
tion time is known and if it is assumed
that frailty at the initial observation time
is gamma distributed (Vaupel, 1979a).
While this latter assumption is convenient
because it simplifies the mathematics,
these estimates can be obtained for any
distribution which has a moment gener-
ating function (MGF). To see this, it is
necessary to examine the relationship be-
tween the force of mortality u(z) faced by
an individual at some given level of frailty
and the probability of survival to each age
s{x, y, z) or, more simply, s(z). The reader
may recall that the force of mortality is
often defined as:

d
b = 5= (-1l (2a)
which yields:
s(z) = €779, (2b)
where
H(z) = H(x, y, 2) (20
= / Wty — x) + 1, 2) dt. 2d)

The symbol H(z) denotes the cumulative
force of mortality faced by an individual
over the age interval (x,, x). Note that we
may set x, equal to the age of initial ob-
servation. For example, if we follow the
survivorship from birth of a given cohort,
then we set x, = 0.

The distribution function of the cu-
mulative forces of mortality for cohort
members, F[H(2)], is defined by the rela-
tionship:

dF[H(2)] = flH(2)] dH(2),  (3)

where f[H(z)] is the probability density
function (pdf) of H(z). Note that dFIH(z)]
is the probability that a given individual’s
cumulative force of mortality is in the in-
terval (H(z), H(z) + dH(z)). Thus, using
(2b), we can write the expected value of
the survivorship proportion as:
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5= E[s(2)] (42)
- / T erOf[H(dH(Z)  (4b)
= MGF[-H(2)]. (40

In writing (4) we assume that individuals
are stochastically independent. Thus, the
proportion surviving is given by eval-
uating the MGF of the negative cumula
tive force of mortality. Note that equation
(4b) is actually a special case of the MGF
with the auxiliary variable ¢ (in e/) set
to the value (—1). Thus, the MGF in (4c¢)
is written as a function of the random var-
iable (—H(z)). Obviously, this does not re-
quire any assumption concerning the dis-
tribution of frailty, z, at the initial
observation time x,. However, if H(z) is
assumed to be a fixed (i.e., non-random)
function of z, then the initial distribution
of frailty may be introduced in (4) by ap-
propriate change of variables in dF(H(z)).

The average force of mortality at age x
can be analytically determined to be a
negative cumulant function (C) by anal-
ogy to (2a), i.e.,

B= 2 (~Inls) (52)
- 5‘9; {(~-In[MGF[-H@Il}  (5b)
= 2 {-CI-HE)) (50)
- %{—C[—z /x :u(t)dt}} (59)

where C denotes the cumulant function
(Kendall and Stuart, 1969, p. 67). From
equation (5c) we see that the cohort force
of mortality i may be equated to the par-
tial derivative of the negative cumulant
function of the negative cumulative force
of mortality over the age interval (x,, x).
This implies (5d) that the cohort force of
mortality & and the standard force of mor-
tality p will be different in heterogeneous
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populations. The extent of this difference
determines the degree of bias to be ex-
pected in mortality analyses which do not
take into account the relationship in (5).
In other words, comparisons of the mor-
tality experience of heterogeneous popu-
lations which employ ratios or differences
of the age specific cohort forces of mortal-
ity, fi’s, are subject to the difficulty that
for heterogeneous populations the ob-
served fi(x) represents a function of both
the standard force of mortality at age x
and the proportion of the cohort surviving
to that age. If the proportions surviving to
age x differ between the populations
being compared, the comparison will not
represent the differential risks faced by in-
dividuals in the two populations.

Likelihood Function for Gamma
Distributed Frailty

In this section we present the derivation
of the likelihood function. The likelihood
derivation is accomplished in three steps.
First, we will show that, if frailty is
gamma distributed at the initial observa-
tion time, then equations (4) and (5) im-
ply that i is a simple function of y and 5.
Second, drawing upon results presented
in Vaupel et al. (1979a), we will show that
the force of mortality among those who
die at any given age is gamma distributed
with i as one parameter. Third, with i ex-
pressed as a function of p and 5, we em-
ploy this gamma distribution to derive the
sampling distribution of the average
(mean) force of mortality in the cohort.
Thus, the observed cohort force of mor-
tality will be treated as a random variable
sampled from a fully specified gamma
distribution with mean .

i. Functional relationship between [i and p,
§

Following Vaupel et al. (1979a), we as-
sume that the initial distribution of indi-
vidual frailty is the gamma distribution.
This allows us to write the probability
that a given individual’s frailty is in the
interval (z, z + dz) as:

dF(z) = f(2) dz, ©)
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where
z) = N2¥le™/T(k) (7a)

is the gamma pdf. As shown in (7a), the
gamma pdf has two parameters—a scale
parameter A and a shape parameter k.
These parameters are combined to deter-
mine the mean and variance of z as fol-
lows:

i=E@) (8a)
=k/A

var@) =E{z— 2/} (8b)
= 2/k.

Equation (8b) shows that the variance of z
is inversely proportional to k. Thus, the
higher the value of k, the lower will be the
degree of heterogeneity. Indeed, from (8a)
and (8b) we find the coefficient of varia-
tion to be the inverse square root of k, i.e.,

V() = 1/k"2, (8¢)

This suggests that the degree of hetero-
geneity can be summarized by the single
parameter k. '

By solving (8a) for A and substituting
the result in (7a) we find that:

=[5 = e, o

which shows that the gamma pdf may be
conveniently reparameterized in terms of
the mean 7 and shape k. We also have, by
definition, the relationship

f(xo) = Z p(xo) )

which, in view of our assumption that the
standard force of mortality and the cohort
force of mortality are equal at birth, im-
plies that

Z=1,x=0.

(10)

Equation (10) implies that the initial
gamma pdf is a function of only one un-
known parameter, k. This reduction to
one parameter is achieved because a
gamma variable may be rescaled to pro-
duce another gamma variable without
changing the shape parameter. We will
now employ this property to solve equa-
tions (4) and (5).
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By substituting equation (1) in (2d), we
find that:

Hiz) =z H, (11)

where
H= / u(®) dt

is the cumulative standard force of mor-
tality over the age interval (x,, x). Sub-
stitution of (10) and (11) in (7b) allows (3)
to be written as:

—kH(z)/H

T(k)

e

dF[H(z)] = % ’ [H(z)]" dH(2).

(12)

Equation (12) shows that H(z) is also a
gamma variable with mean H and shape
k. Reference to any standard statistical
text (e.g., Hastings and Peacock, 1975)
provides the moment generating function
required to solve (4) and (5):

§=(1+ H/k)* (13)
=uw/(1 + H/k). (14)

From equations (13) and (14), it is obvi-
ous that:

fi=ps (15)

Equation (15) shows that, if frailty is
gamma distributed, the cohort force of
mortality is the product of the standard
force of mortality and the (1/k)th power
of the survivorship proportion.

ii. Distribution of force of mortality among
those who die at age x.

It is important to note that equation
(15) is the basic functional relationship in
Vaupel et al. (1979a). This permits us to
draw upon two results presented in that
paper: (1) frailty among the survivors at
any age x is gamma distributed with the
same value of the shape parameter k as at
birth. This means that the force of mortal-
ity among the survivors at age x will be
gamma distributed with mean g and
shape k. (2) Frailty among those who die
at any age x is also gamma distributed

393

with the same age dependent scale pa-
rameter A(x) as among those surviving to
age x but with shape parameter k + 1.
This means that the force of mortality
among those who die at age x will be
gamma distributed with shape k + 1 and
mean ji*, where

= itk + 1)/k. (16)

Thus, the probability that the force of
mortality among those who die at age x is
in the range (u*(z), u*(z) + du*(z)) may
be written in the form:

-k ur(2)/i

arpe@l = W fg @
)

iii. Sampling distribution of the average
force of mortality.

In order to derive the sampling distri-
bution of i, the observed cohort force of
mortality, we need to do two things. First,
using d(x, y), or more simply d, to denote
the number of deaths in population group
i at age x at time y, we obtain the distribu-
tion of the sum of u* for the d persons
(i.e., Y-, p.*) from the d-fold con-
volution of (17). Second, we rescale this
distribution by the factor k/[d- (k + 1)],
yielding:

¢

. d- (k+1)
aripy = | E
. l‘ld'(k"'l)—l . e—d'(k+l)' B/ - 5175
T (k+ 1) (18)
with mean and variance
E(p) = p 5 19)
=4
var(i) = [E(Q)F/[d - (k + 1)].  (20)

The parameters we wish to estimate are &
and p. Equation (18) can be used to form
the likelihood of k and p if empirical esti-
mates of d(x, y), fi(x, y) and §(x, y) are
available. These empirical estimates can
be obtained from cohort life tables as de-
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scribed below, thereby permitting k and u
to be estimated using the ML procedures
described in the Appendix. However, the
fact that there are two parameters, k and
u, associated with each observed mortality
count d suggests that to obtain estimates
constraints will have to be imposed on the
variation of these parameters over ob-
served data points. These constraints will
be discussed below.

Models of the Standard Force of Mortality

In the previous section, it was shown
that, if the initial population distribution
of frailty were the gamma distribution,
then the likelihood function could be ex-
pressed as a function of two parameters
per observed data point. Additionally, the
gamma shape parameter which does not
vary over age is a characteristic of the
population and, therefore, may be reason-
ably assumed not to vary over successive
cohorts of the same population. Actually,
this assumption is reasonable if mortality
selection is the dominant factor in the age
changes in the heterogeneity distribution
for each cohort. This would be the case if
the effects of modern medicine on life ex-
pectancy over the past century can be rep-
resented by reductions in the age specific
standard forces of mortality over succes-
sive cohorts—but not by a reduction in
the coefficient of variation and, hence, the
shape parameter k (see equation 8c), of
the reduced mortality risk levels. This
suggests that, considering only one popu-
lation group, if we have observations for
n, ages-for n_ successive cohorts, we need
to deal with n + 1 parameters from n ob-
served data points, where n = n, - n.. This
condition makes it clear that we have to
make some assumption about the age tra-
jectory of individual mortality risks in or-
der to obtain estimates of the parameter
k. We will consider four such models of
the age trajectory of individual mortality
risks. These four models were selected be-
cause they are flexible and can represent
an extremely broad range of age trajec-
tories of individual mortality risks. This
flexibility is required because we assume
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that the effects of modern medicine and
various public health measures can be
adequately represented in the model of
the standard force of mortality. The range
of estimates of heterogeneity produced
under these various models reflects the
magnitude of population heterogeneity if
the “true” individual age trajectory of
mortality risks were represented by one of
the models selected.

The first model selected represents the
standard force of mortality as a Gompertz
function of age. This model was selected
because the Gompertz function is often
selected to represent the age trajectory of
mortality risks in a population or cohort.
Consequently, the estimate of population
heterogeneity produced under this model
would be the appropriate estimate of het-
erogeneity if the Gompertz function was
indeed representative of the age change of
mortality risks for individuals. The Gom-
pertz function is:

px, y) = a,, €, (21a)

where
=y —x

represents the year the cohort was born.
In this model each cohort is permitted to
have a different initial mortality constant,
a. The parameter B8, the Gompertz rate
parameter which governs the trajectory of
the age increase in the standard force of
mortality, is assumed constant over suc-
cessive cohorts. For estimation purposes,
we find it more convenient to deal with a
reparameterization of (21a):

u(x, y) = exp[ln(a) + Bx + c,],

where ¢, represents a contrast between
the cohort born at y, and some other
specified cohort (in our example, this will
be the 1885 birth cohort) to which the « in
(21b) applies directly.

The second model was selected because
it does not require the individual force of
mortality to follow any parametric form,
i.e., an age specific force of mortality is
not constrained to be related to other age

(21b)
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specific forces of mortality within the co-
hort. What is assumed, however, is that
each age specific force of mortality is pro-
portional to the force of mortality at the
same age in other cohorts. This model can
be written:

p(x, y) = exp[lnu(x)] +¢,]  (22)

where ¢, is a contrast between the force
of mortality for standard individuals at
age x in the cohort born in year y, and the
force of mortality at age x in a cohort
born in some other year, e.g., given the
data described in the next section, 1885.
Since the contrast parameter is in the ex-
ponent, it represents the proportionality
factor between the force of mortality at
the same age in different cohorts.

The third model extends the second
model by allowing the proportionality
factor ¢, to increase or decrease, ex-
ponentially, across age. This model may
be represented as:

wx, y) = exp[lnfu(x)] + ¢,
+ v, (1885 — yy)] (23a)

where v, is the change in the proportion-
ality factor c, for age x. The fourth model
extends the second even further by allow-
ing the proportionality factor to vary ex-
ponentially across cohorts as well as
across ages. This model may be repre-
sented as:

u(x, y) = exp[ln[u(x)] + c,,
+ v, (1885 — yo) + B, x] (23b)

where 8, is the change in the proportion-
ality factor c,, for a given cohort.

DATA

Estimation of the parameters of (18) re-
quires that we obtain both the cohort sur-
vival variables, 5(x, y), and the cohort
mortality counts, d(x, y), as well as the
observed cohort forces of mortality, fi(x,
y) for the populations to be compared.
Mortality data for U.S. white males and
females and Swedish males and females
for the years 1850 to 1975 were obtained
from a number of published sources.
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Swedish data were used because of the
high quality of the Swedish vital statistics
system as well as the unusually long his-
torical time series for this country. This
latter aspect is particularly important to
our strategy of estimating the range of k
by analyzing a series of cohort mortality
experiences.

The Swedish data for 1850 to 1880 were
derived from Keyfitz and Flieger (1968),
while the data for 1881 to 1975 were de-
rived from the Statistical Abstract of Swe-
den (1976). The Keyfitz and Flieger data
were in the form of abridged life table
mortality probabilities (i.e., g0, 4¢:, and
s 5 = x < 80) for five-year time periods.
In contrast, the Statistical Abstract of
Sweden data were in the form of complete
life table mortality probabilities (i.e., ,q,,
0 = x =< 89) for either ten-year time peri-
ods (1881 to 1930) or five-year time peri-
ods (1931 to 1975). Neither of these data
forms is appropriate for the construction
of the complete cohort life tables required
for our analysis. Consequently, inter-
polation techniques (described in Vaupel
et al.,, 1979b) were employed to provide
period and cohort life tables.

For the United States, the data prob-
lems were more severe. First, there is the
difficulty that the death registration sys-
tem was not completed in the United
States until 1933. Second, there are ques-
tions about the reliability of mortality
data, though the problems seem to be
greater for the nonwhite population.
Third, census enumeration errors affect
the denominators of the death rates,
though, as for the mortality data, these
problems seem to be greater for the non-
white population. These difficulties sug-
gested that we employ alternatives to the
“official” life tables provided by the vital
statistics system. Indeed, a great deal of
effort has been expended by demogra-
phers in attempting to provide such alter-
nate life tables. For U.S. whites in 1850,
we employed the life table data (i.e., ,q,, x
= 0,1,2,3,4,5,10,...85) from Jacobson
(1957). For 1901 and the decennial years
1910 to 1950, U.S. white life table data
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(e., I, x = 0,1,5,10,. . .90) which were ad-
justed for census enumeration errors were
taken from Coale and Zelnik (1963). For
1960 and 1970, the Siegel (1974) estimates
of census errors were employed to adjust
the “official” complete life tables for those
years. Here it should be noted that the
Siegel estimates involved the Coale and
Zelnik methodology, so that it is unlikely
that bias would be introduced into the co-
hort life tables at the point of crossing
over from the Coale and Zelnik data to
the Siegel adjusted data. For 1975 we
constructed complete life tables from the
mortality counts provided by the Na-
tional Center for Health Statistics and the
1975 resident population projections pro-
vided by the U.S. Bureau of the Census.
The interpolation methods applied to the
Swedish data (Vaupel et al., 1979b) were
also applied to U.S. data.

With these data, it was possible to con-
struct complete life tables up to age 89 for
each cohort born in the 35-year period
1850 to 1885. The cohort survivorship
variables §(x, y) were estimated from the
l.-column of the cohort life tables for the
cohort born in year (y-x) in population
group i as the ratio /,/l,, where [, is the co-
hort life table radix and [, is the cohort
life table number of survivors at exact age
x. Additionally, with the cohort survivor-
ship variables §(x, y) available, we were
able to normalize the cohort radix for
each of 8 birth cohorts in such fashion
that the number of survivors at age 65
matched the published population figures
at age 65 for those cohorts. The 8 cohorts
were the 1850, 1855, 1860, 1865, 1870,
1875, 1880, and 1885 birth cohorts. By
normalizing the cohort radices in this
fashion, it was possible to estimate the
d(x, y)’s required for use in our likelihood
function.

The observed cohort force of mortality
is not contained in the cohort life tables.
Consequently, to estimate these quan-
tities, we used the negative logarithmic
transformation of the age specific proba-
bility of survival, i.e.,
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ﬁi(x) y) =- ln[I - ‘I:(x’ y)], (24)

where g(x, y) is the life table probability
of death at age x in year y in population i.

Finally, because we were forced to em-
ploy interpolated data and because the
Gompertz function is appropriate only for
adult mortality, we restricted our analysis
to every fifth year of age in the age range
35 to 85 and age 89. This restriction will
have the effect of minimizing bias due to
interpolation. Thus, the analysis is con-
cerned with n, = 8 cohorts and n, = 12
ages, for a total of n = 96 data points for
each of four populations.

RESULTS

In this section we will present the pa-
rameter estimates for the distribution of
individual frailty derived under four dif-
ferent sets of model assumptions con-
cerning the changes over both age and co-
hort of the standard force of mortality.
These estimates were based on independ-
ent analyses of four population groups—
U.S. white males and females and Swed-
ish males and females. For each popu-
lation group, the parameter estimates
were based on data from 8 successive co-
horts born in 1850, 1855, 1860, 1865,
1870, 1875, 1880, and 1885, respectively.
For each cohort, data from 12 ages were
analyzed—ages 35, 40, 45, 50, 55, 60, 65,
70, 75, 80, 85, and 89. Hence, the parame-
ter estimates for each population group
were based on a total of 96 data points.

This section is in three parts. We first
examine the level of fit of each of the four
different models, selecting a model which
best represents the data by organizing the
models so that they can be tested as a se-
ries of hierarchical hypotheses with the
Gompertz model representing the sim-
plest or baseline model. We then present
the parameters and evaluate the fit of the
Gompertz model since the Gompertz
model is a commonly used actuarial func-
tion. In the third part of this section we
present and discuss the best fitting of the
more general model forms.
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Evaluation of Models of Population
Heterogeneity

As we have indicated it is necessary to
select a particular model of the age trajec-
tory of individual mortality risks before
estimates of heterogeneity can be pro-
duced. In a previous section we selected
four such models with the standard Gom-
pertz function being the basis for the most
restrictive of them. To evaluate the fit of
these models it is necessary to realize that
a likelihood chi-squared value may be
calculated for each model (see Appendix).
To test between the fits of the four models
we shall calculate a series of F-statistics
by

o Xel/(D.F = D.F.)
XBZ/D'EB

25

where x;,° is the likelihood chi-squared
value obtained from the comparison of
the likelihood function values in the sim-
pler (fewer parameters) model A with de-
grees of freedom D.F., and the corre-
sponding value for the more complex
model B with degrees of freedom D.F.
and x> is the “goodness of fit” chi-
squared value for model B with k fixed at
the estimated value (see Appendix). The
F-statistic then represents a test, with de-
grees of freedom D.F., — D.F.; and D.F.;,
of the significance of the average im-
provement in fit produced by the addi-
tional parameters added in the more com-
plex model. By making the tests in this
way there is less danger of over-fitting the
model (i.e., of adding parameters that ex-
plain only interpolation and other data
bias) since the test of the efficacy of the
additional parameters is made against the
residual mean square error for the more
complex model. Let us designate the four
models as Model I (the Gompertz model;
equation 21b), Model II (the age specific
proportional hazard model; equation 22),
Model III (the age specific, proportional
hazard model with exponential changes,
equation 23a) and Model IV (the age spe-
cific proportional hazard model with ex-
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ponential age and cohort changes, equa-
tion 23b). The models may be tested in a
hierarchical sequence from Model I to
Model IV. The F-statistics for these hier-
archial tests are presented, for each of the
four population groups, in Table 1.

The results in Table 1 are clear. The
additional parameters in Model III im-
prove the fit to the data markedly—y’
change going from Model I to Model III
was 217,056, 23,326, 270,011 and 27,439
for U.S. white males, Swedish males, U.S.
white females and Swedish females re-
spectively. The improvement in going
from Model II to Model III was also
highly significant. However, the improve-
ment in going from Model III to Model
IV was insignificant (p > 0.25) for three of
the population groups, being significant
(» < 0.001) only for U.S. white females.
As a consequence we select Model III as
our best fitting model.

Model I: The Gompertz Model

As we have indicated we will discuss
the analysis produced under Model I, or
the Gompertz specification, since it is a
familiar model to most demographers and
because it is a model that has commonly
been used to model mortality.

This model was parameterized so that
the parameters a and 8 applied directly to
the Gompertz function for the 1885 birth
cohort. Seven parameters representing
contrasts of the other seven birth cohorts
with the 1885 birth cohorts were also esti-
mated. Finally, a single parameter k rep-
resenting the initial population frailty dis-
tribution was estimated. Hence, for each
population group, the Gompertz model
required estimation of 10 parameters.
These parameters, estimated via ML pro-
cedures, and their standard errors, are
presented in Table 2.

Examination of Table 2 shows that, for
all four population groups, all 10 parame-
ters are estimated with a high degree of
precision. The Gompertz constant In(«) is
largest for U.S. white males (—8.23) and
smallest for Swedish females (—9.11) with
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Table 1.—F-Statistics for Tests of the Fit of a
Hierarchical Sequence of Models

U.S. White Swedish U.S. White Swedish

Comparisons Males Males Females Females
Model I versus

Model II

F10,76 139.8 636.3 233.7 451.4
Model II versus

Model III

Fi1,65 27.1 8.4 53.0 11.9
Model III versus

Model IV

Fe,59 1.1 0.7 4.7 1.3

Swedish males (—8.89) and U.S. white fe-
males (—8.71) ranking third and second,
respectively. Thus, Swedes have a lower
initial mortality constant than have
Americans and, within country, females
have a lower initial mortality constant
than males. Interestingly, the Gompertz
rate parameters exhibit the reverse pat-
tern with U.S. white males (0.080) and fe-
males (0.082) ranking fourth and third,
respectively, while Swedish males (0.088)
and females (0.089) rank second and first
respectively. Thus, there is a negative cor-
relation between the In(a) and B parame-
ters in the Gompertz function model for
the standard force of mortality. The exis-
tence of a negative correlation was antici-
pated from the results of the application
of the Gompertz function to cohort mor-
tality rates (Strehler, 1977).

The Gompertz rate parameters have a
simple interpretation as the proportional
increases in the standard force of mortal-
ity over single years of age. To see this,
consider the expression for the ratio of the
standard forces of mortality at ages (x +
1) and x. From equation (21a), this ratio
is found to be simply e* which for small

values of 8 is approximately equal to (1 +
B). For example, for U.S. white males the
estimated B value (0.080) is interpreted as
an approximate 8 percent increase in the
standard force of mortality per single year
of age. The actual value computed using
the ratio e’ is only slightly higher at 8.3
percent.

Also included in Table 2 are the con-
trast parameters (c,’s) for the seven co-
horts born in 1850, 1855, 1860, 1865,
1870, 1875, and 1880. For all four popu-
lation groups, the c,’s indicate a mono-
tonic decline in the standard force of mor-
tality over successive cohorts. The c,’s
may be interpreted in any of three ways.
First, they may be added to the In(a) pa-
rameter to produce an estimate of In(a) as
in equation (21b). For example, to com-

pute In(ayss0) we simply add In(a) and

Cisso, yielding —7.92 (U.S. white males),
—8.61 (Swedish males), —8.14 (U.S. white
females), and —8.71 (Swedish females).
Here we see that, although the Gompertz
constants maintain the same relative
ranking as for the 1885 cohort, the differ-
ence between Swedish males and U.S.
white females is now much larger (rising
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Table 2.—Parameter Estimates for Gompertz Model
U.S. White Swedish U.S. White Swedish
Males Males Females Females
Laa. _..) -8.23 -8.89 -8.71 -9.11
1885 (3.58x107°) (1.61x107%) (4.44x107) (1.66x1072)
B 8.00x10:§ 8.85x10:2 8.22x10:§ 8.90x10:2
(6.80x10"°) (2.84x10 ) (7.96x10 °) (2.84x10 )
L850 3.12x107; 2.81x107} 5.74x10 3 4.00x107%
(2.03x10 ) (8.82x10 ) (2.62x10 ) (9.02x10 °)
¢ 855 2.79x10:§ 2.50xlO:§ 5.18x10:§ 3.69x10:§
(1.96x10 ) (8.66x10 °) (2.51x10 ) (8.85x10 )
1860 2.4Lx10:§ 2.35x10:§ 4.48x10:§ 3.60x10:§
(1.90x10 ) (8.46x10° ") (2.39x10 ) (8.65x10 °)
©1865 2.llx10:§ 1.93x10:§ 3.79x10:§ 3.11x10:§
(1.83x10 7) (8.48x10 ") (2.30x10 ) (8.71x10 ")
1870 l.72x10:§ l.51x10:§ 2.97x10:§ 2.75x10:§
(1.76x10 ) (8.39x10 ) (2.20x10 ) (8.69x10 °)
¢1a7s 1.14x107 1.14x107} 2.09x10 5 2.37x10_;
(1.71x10 ) (8.13x10 ) (2.11x10 ) (8.46x10 )
-2 -2 -1 -1
<1880 5.44x10_% 8.34x10_3 1.24x10_y 1.61x10_,
(1.65x10 ) (7.95x10 ) (2.02x10 ) (8.28x10 )
k 3.93  _, 3.20 _, 2.84 2.79
(1.91x10 ) (5.35x10 °) (1.40x10 °) (4.38x10 °)
Note: Standard errors are in parentheses.

from 0.18 to 0.47). Second the ¢, ’s may be
exponentiated (as in equation (21a)) to
produce a measure of the proportional in-
crease in risk experienced by the earlier
cohorts as compared to the 1885 birth co-
hort. For example, the 1850 cohorts had
an increased risk of 37, 32, 78, and 49 per-
cent respectively, in the U.S. white male,
Swedish male, U.S. white female and
Swedish female populations as compared
to the 1885 birth cohorts in these four

population groups. Third, differences in
the ¢,’s between successive cohorts may
be divided by the time interval length to
estimate the proportional decrease in the
standard force of mortality over single
years of time. For example, as a rough
measure of the overall rate of decrease,
we may take the difference between c,gs
and ¢4 (Which, by definition is zero) and
divide by 35 years to find net decreases of
0.9, 0.8, 1.6 and 1.1 percent per year, re-
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spectively, in the U.S. white male, Swed-
ish male, U.S. white female, and Swedish
female population groups.

The final parameter in Table 2 is the
heterogeneity parameter k. This parame-
ter describes the shape of the hetero-
geneity distribution so that larger values
of k are indicative of a reduced level of
heterogeneity. That is, as shown in equa-
tion (8c), the coefficient of variation is ob-
tained from the inverse square root of k
so that large k’s translate into small coef-
ficients of variation. Here it is seen that
under the assumption that the standard
force of mortality can be modeled as a
Gompertz function of age, U.S. white
males have the largest k (3.93), Swedish
females have the smallest k (2.79), while
Swedish males (3.20) and U.S. white fe-
males (2.84) rank second and third re-
spectively. Thus, the Gompertz model im-
plies that Swedish females have the
largest coefficient of variation (0.60), U.S.
white females the second largest (0.59),
Swedish males the third largest (0.56),
while the smallest coefficient of variation
is obtained for U.S. white males (0.50). A
second way of interpreting these shape
parameter estimates relies on the property
that a gamma distribution with shape pa-
rameter k may be rescaled to produce an-
other gamma distribution with the same
shape parameter k. Consequently, k rep-
resents the shape parameter of the distri-
bution of either the force of mortality at
any given age or the individual frailty lev-
els among survivors at any given age. In
Figures 1 and 2 we have graphed the
frailty distribution for the 1885 birth co-
horts in the U.S. white male and Swedish
female population groups using the values
of k reported in Table 2.

The four plots in Figure 1 are the
gamma distributions of frailty in the 1885
U.S. white male birth cohort at birth and
for survivors to ages 45, 65, and 85. Each
plot is normalized to a probability mass
equal to the survivorship proportion §(x),
ie.,

fx(x’ s Z) = f(xo’ Yos z) : S(x’ y,Z), (26)
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where f(x,, yo, 2) is given in (7b); s(x, y, z)
is formed by solving (13) for H and sub-
stituting the result in (2b); and f,(x, y, z) is
the function plotted. By integrating both
sides of (26) with respect to z, we find
that:

[Crerae=mera @)

= 5(x, ),

so that the effects of mortality selection on
the cohort can be seen as a “shrinking” of
the distribution. Note the rapid removal
of persons with high frailty levels (z >
1.0) at each age: by age 85, only those per-
sons with very low frailty values survive.

The four plots in Figure 2 are the
gamma distributions of frailty in the 1885
Swedish female birth cohort at birth and
for survivors to ages 45, 65 and 85. As in
Figure 1, these plots have been normal-
ized to a probability mass of §(x). Here,
we find that Swedish females, with a
much lower k than U.S. white males (2.79
versus 3.93) have greater variance in the
initial distribution and, because the shape
parameter k remains constant under the
operation of mortality selection, they also
exhibit greater relative variance at each of
the ages 45, 65, and 85.

In the above two figures we have exam-
ined the distribution of frailty at birth and
among survivors to three ages—45, 65,
and 85. A third way of interpreting the es-
timated shape parameter values is based
on the fact that the force of mortality
among those who die at any given age is
gamma distributed with shape parameter
k + 1 and mean g* where from equation
(16) we have:

i*/p=(k+ 1)/k. 28)

Thus, the quantity (k + 1)/k is a measure
of relative risk, giving the proportional in-
crease in average risk for those who die at
any given age compared to the average
risk for the survivors to that age. Using
the values of k£ from Table 2, we find that
Swedish females have the largest relative
risk (1.36) and U.S. white males have the



Figure 1.—Frailty Distributions for 1885 U.S
White Male Cohort at Four Selected Ages—
Predicted from Gompertz Model
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Figure 2.—Frailty Distributions for 1885 Swedish
Female Cohort at Four Selected Ages—Predicted
from Gompertz Model
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smallest (1.25), while Swedish males
(1.31) and U.S. white females (1.35) rank
third and second, respectively. It is inter-
esting to note that the female population
groups exhibit virtually identical relative
risks, especially given the fact that the k
values were determined from independent
analyses. Males, on the other hand, ex-
hibit about a 6 percent difference between
Sweden and the U.S. population groups.

Model 111: Age Specific Standard Force of
Mortality Model

In the third model we tested, the Gom-
pertz function for the 1885 birth cohort
was replaced by 12 u parameters repre-
senting the 12 age specific standard forces
of mortality in the 1885 cohort and 12 y
parameters representing the change of the
age specific forces of mortality over co-
horts. One of the seven contrast parame-
ters was constrained to eliminate a colli-
nearity with the y parameters. Hence this
third model was estimated with 31 param-
eters which included 6 ¢,’s and k from the
Gompertz model but replaced the In(a)
and B parameters with 12 In(u(x)) param-
eters and 12 vy, parameters. The estimated
parameter values and their standard er-
rors are presented in Table 3.

To illustrate the improvement of Model
III over the other two models we present,
in Figure 3, the cohort forces of mortality
predicted from the three models, and the
observed forces of mortality, for the 8
U.S. white male cohorts. In Figure 3 the
observed values are indicated by the sym-
bol O, the values predicted from Model I
by [, the values predicted from Model II
by ©, and the values predicted from
Model I1I by +. The cohort forces of mor-
tality, both predicted and observed, are
plotted against “date” so that to deter-
mine age from the plot the birth date of
any given cohort has to be subtracted
from date, i.e., the values at 1885 are the
first age points for the 1850 cohorts so
that 1885—1850 =35.

In Figure 3 we see that Model I (the
Gompertz) systematically deviates from
the observed values at both younger ages
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(below age 75, over prediction) and at
later ages (under prediction) for all 8 co-
horts. For Model II the deviations are not
as large and they change sign over co-
horts. That is, the pattern of deviation
from the observed for Model II is the
same as the Gompertz up to the 1870 co-
hort. For the 1875 and later cohorts the
pattern reverses with under prediction be-
low age 75 and over prediction after age
75. The deviations of Model III from the
data are very small and show no regular
pattern. Thus the plots for the U.S. white
male cohorts clearly indicate that Model
III is the best model with no systematic
pattern of deviations.

The most important changes in param-
eter values between Models I and III are
the declines in the heterogeneity parame-
ter k for U.S. white males (0.60 versus
3.93) and Swedish males (1.59 versus
3.20), U.S. white females (0.82 versus
2.84) and Swedish females (2.40 versus
2.79). These reductions in k imply sub-
stantially greater heterogeneity, especially
for the two U.S. groups, than implied un-
der Model I. For example, these values of
k yield coefficients of variation of 1.29
and 1.10, respectiyely, for U.S. white
males and females which are substantially
larger than the prior estimates of 0.50 and
0.59. For Swedish males, the coefficients
of variation increases from 0.56 to 0.79
while for Swedish females the increase is
more modest, rising from 0.60 to 0.65.

A comparison of the 6 ¢,’s common to
the two models shows that in Model III
the cohort changes are much larger than
under the Gompertz for males and
smaller in Model III than in the Gom-
pertz for females. For example, c g5, in-
creases for U.S. white males (0.34 versus
0.31), for Swedish males (0.36 versus
0.28), but decreases for U.S. white fe-
males (0.43 versus 0.57) and Swedish fe-
males (0.33 versus 0.40). As discussed we
may divide these ¢ g50’s by 35 years to pro-
duce a rough measure of the overall rate
of decrease in the standard force of mor-
tality in the four population groups.
These net decreases are 1.0, 1.0, 1.2, and
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Table 3.—Parameter Estimates for Age Specific
Standard Force of Mortality Model with Changes in
Age Specific Standard Forces of Mortality over

Cohorts
U.S. White Swedish U.S. White Swedish
Males Males Females Females
ony -4.37 -4.75 -4.73 -5.00
35 (3.48x107%) (5.76x10"%) (2.90x10™%) (3.21x10"2)
ILnu4o -4.26 - -4.87 -2 -4.72 -2 -5.04 -2
(3.79x102) (6.19x1072) (3.14x10™%) (3.39x107%)
b, o 401 _, .75 _, 456 _, 5,02,
(4.11x10"%) (6.50x10™%) (3.38x10"2) (3.56x10"%)
i, 3.61 449 _, 4.8 _, %71,
(4.52x107%) (6.84x10"%) (3.66x10™%) (3.60x10" %)
n -3.17 —4.15 -3.98 ~4.49
s (5.10x10"2) (7.35x10"%) (4.03x102) (3.73x1072)
g -2.63 -3.74 -3.58  _, -4.13
(5.93x10™%) (8.13x10~%) (4.51x10" %) (3.95x10™%)
b -1.98 -3.25 3.0 _, -3.66
(7.20x10"%) (9.36x10"2) (5.21x10"%) (4.37x10°%)
R -L26 -2.68 -2.53  _, 313 _,
(9.00x10™2) (1.13x10" 1) (6.26x10"2) (5.16x10"2)
by -0.38 -2.06 -1.89 -2.55
(1.18x10” 1) (1.46x10" 1) (7.97x10°%) (6.58x10"2)
any 0.75 -1.28 -1.07 -1.90
80 (1.57x10" 1) (2.00x10™ 1) (1.03x10™ 1) (8.94x1072)
on 2.19 ~0.41 -0.10 -1.22
85 (2.16x10" 1) (2.88x10° 1) (1.41x10° 1) (1.28x10°h)
gy 3.51 0.41 0.80 -0.63 _
89 (2.76x10"0) (3.92x10 1) (1.84x10™ 1) (1.74x10" %)
c 0.34 0.36 0.43 0.33
1850 (1.98x1072) (6.68x10" %) (2.15x1072) (6.08x10™%)
c 0.29 _ 0.32 0.40 0.32 _
1855 (1.68x1072) (5.67x10"2) (1.80x10°%) (5.09x10"2)
c 0.26 _ 0.27 0.36 _ 0.31
1860 (1.38x1072) (4.67x10"%) (1.46x10°2) (4.18x1072)
c 0.24 0.25 0.33 0.28
1865 (1.06x10"2) (3.68x10™%) (1.11x107%) (3.25%10"2)
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Table 3.—(Continued)
c 0.21 0.20 _ 0.28 _ 0.26 _
1870 (7.79x107%)  (2.73x1072)  (7.94x107°)  (2.34x107%)
c 0.14 _ 0.14  _ 0.21 _ 0.22  _
1875 (5.13x107%)  (1.83x107%)  (5.19x1070)  (1.54x10°%)
Y35 9.57x10:2 -7.l6x10:§ 5.72x10:2 -3.32x10:§
(8.84x10 ) (2.48x10 ) (9.62x10 ') (2.21x10 °)
Y40 1.22xld:§ 3.54x10:§ 6.23x10:2 1.79x10:§
(9.12x10 ) (2.49x10 ) (9.97x10 ) (2.22x10 )
Y45 l.l6xlo:§ 4.78x10:g 5.55x10:g 3.15x10:g
(9.34x10 ) (2.46x10 7) (1.01x10 7) (2.22x10 7)
Tso 8.65x10:2 3.28x10:§ 4.19x10:§ 1.78x10:§
(9.62x10 ) (2.43x10 ) (1.03x10 °) (2.19x10 )
Yss 6.l4x10:2 l.66x10:§ 4.67x10:§ —l.l6x10:g
(9.84x10 ) (2.40x10 ) (1.04x10 ) (2.15x10 )
Yeo 45&d{2 4Jhu(§ 53@&{3 —aswuig
(9.96x10 ) (2.38x10 ") (1.08x10 ) (2.11x10 )
Y5 2.77x10:2 -9.97x10:§ 7.26x10:g -8.09x10:g
(9.99x10 ) (2.36x10 ") (1.13x10 ") (2.08x10 °)
Y70 4.50x10:§ —2.llx10:§ 8.33x10:§ —5.74x10:§
(1.01x10 °) (2.37x10 ") (1.23x10 °) (2.07x10 °)
Y15 9.66x10:§ -l.96x10:§ l.42x10:§ 1.14x10:§
(1.08x10 ) (2.41x10 ) (1.38x10 ") (2.10x10 °)
Yso l.54x10:§ —2.89x10:§ l.94x10:§ 2.76x10:§
(1.30x10 ) (2.51x10 ") (1.74x10 °) (2.20x10 °)
Ygs 2.58x10:§ 2.80x10:g 3.le10:§ 6.41x10:g
(1.70x10 ") (2.80x10 ) (2.28x10 ) (2.44x10 )
Yoo 4.24x10:§ 7.23x10:§ 4.24x10:§ 1.11x10:§
(2.42x10 ) (3.31x10 ) (3.12x10 ") (2.83x10 °)
k 0.60 D) 1.59 -1 0.82 -2 2.40 -1
(3.21x10 %) (3.37x10 ) (5.65x10 ) (4.01x10 )
Note: Standard errors are in parentheses.



Figure 3.—Observed and Predicted Cohort Forces
of Mortality for Eight U.S. White Male Cohorts
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0.9 percent per year, respectively, in the
U.S. white male, Swedish male, U.S.
white female and Swedish female popu-
lation groups (compare with 0.9, 0.8, 1.6
and 1.1 percent under the Gompertz
model). Clearly, the age specific model
leads to more similar rates of change.

The next parameters to be examined
are the In(u(x))’s. As indicated, these pa-
rameters are direct estimates of the stan-
dard forces of mortality in the four popu-
lation groups for the 1885 cohort at the
specified ages. From Table 3 it can be
seen that these parameters generally form
a monotonic increasing sequence over age
in all four population groups. Addition-
ally, it is seen that the standard force of
mortality at all ages is highest for U.S.
white males, second highest for U.S.
white females, third highest for Swedish
males, and lowest for Swedish females.
The age trajectory of individual mortality
risks for all four population groups is far
more rapid than in the observed data or
under the Gompertz model.

The final set of parameters in the
model, the v,’s, represent the change in
the age specific standard force of mortal-
ity over cohorts. As discussed, these pa-
rameters estimates are conditional on the
contrast parameter ¢z, which in Model
III was constrained to the values obtained
in Model II (i.e., ¢,55 Was fixed at 0.07,
0.07, 0.12 and 0.13 respectively for U.S.
white males and females and Swedish
males and females). Thus, these parame-
ter estimates cannot be unique and must
be interpreted jointly with the contrast
parameters. In general the estimates of v,
are larger for both U.S. males and fe-
males than for Swedish males and fe-
males. The parameters show that for both
U.S. groups there was an age specific de-
crease for all ages in the individual force
of mortality. For Sweden a number of the
Y. are insignificant. To determine the total
magnitude of change the y, have to be
multiplied by (1885 — y,) and added to
the appropriate c,. For example, for the
1850 cohort each y, parameter would be
multiplied by 35 and would represent the
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value by which, at age x, the 1850 cohort
had higher logarithmically transformed
standard forces of mortality than in the
1885 cohort.

DISCUSSION

The purpose of this paper is to illustrate
methods for comparing the mortality ex-
perience of different human populations
by adjusting the comparisons for the de-
gree of individual heterogeneity to mor-
tality risks within each population. This
required using human mortality data for
national populations and four different
models for the age change of individual
mortality risks to generate a range of esti-
mates of the parameter k. This was done
because the estimates of heterogeneity
vary with the assumptions made about
age change of the force of mortality for
individuals. The estimates of k varied
from 3.93, 2.84, 3.20 and 2.79 for U.S.
males and females and Swedish males
and females respectively, if the age trajec-
tory of individual mortality risks followed
the Gompertz model, to 0.60, 0.82, 1.59
and 2.40 under a model which did not as-
sume a specific parametric form for the
age increase in individual mortality risks.

The estimates of k between roughly 0.6
to 3.9 suggests that substantial population
heterogeneity is present in all populations
and that, consequently, the effects of mor-
tality selection will have important impli-
cations for analyses of elderly popu-
lations. To illustrate, for the 1975 Swedish
female period life table, the currently cal-
culated life expectancy at birth is 78.15
years. In contrast, for kg = 3, the ad-
justed life expectancy would be 1.79 years
less; for ksr = 4, it would be 1.11 years
less. Even for kg = 8, a value consid-
erably larger than the values estimated in
this paper, the adjusted life expectancy
would be 0.34 years less than the cur-
rently calculated value of 78.15 years. To
gain some perspective on the magnitude
of these discrepancies, recall that Keyfitz
(1977) reports that the total elimination of
cancer death would affect life expectancy
by about 2.3 years. Thus, with our esti-
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mates of k in the range of 0.6 to 3.9 the
substantive implications of the hetero-
geneity suggested by our estimates for life
table computations are of the same order
of magnitude as the elimination of major
causes of death.

Given that the methods proposed in
this paper can be applied to generate nu-
merical estimates of the degree of hetero-
geneity in a given population, this raises
the more fundamental issue of how we
shall interpret such estimates. A simplistic
interpretation would deal with frailty as a
biological constant determined solely by
genetic factors. However, even a brief re-
view of the epidemiologic literature sug-
gests that numerous risk factors, which
are modifiable throughout at least part of
the lifespan, contribute to significant risk
heterogeneity to specific diseases and
hence to total mortality. Since (a) our esti-
mates of the degree of risk heterogeneity
are based on a model of mortality selec-
tion and (b) the process of mortality selec-
tion requires only that the mortality risks
are distributed over individuals, regard-
less of the source of this heterogeneity, it
is clear that these estimates cannot be
simply decomposed into genetic and non-
genetic components of heterogeneity.
Thus, the frailty variable z must be inter-
preted as a measure of the combined ef-
fects of both factors operating to system-
atically increase or decrease a given
individual’s mortality risk vis-a-vis the
standard force of mortality. In any event,
the challenge for future researchers is (a)
to adequately account for such hetero-
geneity in their analyses of mortality, es-
pecially when analyzing mortality in el-
derly populations, and (b) to attempt to
unconfound the various sources of hetero-
geneity so that those which are correlated
with an individual’s probability of sur-
vival, and which follow the age trajectory
of the standard forces of mortality rather
than the cohort force of mortality, are
clearly identified as being subject to the
effects of mortality selection.
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APPENDIX

Presented here are the details of the
ML procedure employed in estimating the
parameters in equation (18). By employ-
ing the Stirling approximation to the
gamma function (I') in (18), is possible to
express the log likelihood for k and u in
the form:

L(k, pld, 5, i) = %2 In (k + 1)

+dm+n{mth+P—E%4}

where a constant term In[(d/(27))"%/fi]
need not be considered, and hence, is
omitted from (A.l). Our objective is to
find the parameter values for k and u
which maximize the sum, over all ob-
served data points, of functions of the
form (A.1). To achieve this objective, we
employed the Newton-Raphson al-
gorithm which, starting with some arbi-
trary initial parameter values, iteratively
improves the parameter estimates until
the maximum of the sum of L’s in (A.1) is
found. Although estimation is conducted
separately for each model, differences in
the sums of L’s may be transformed to ap-
proximate x° variables for hierarchical
model testing.

Estimation

In the Newton-Raphson procedure, a
parameter vector b is replaced, at each
iteration, with a “better” estimate of b,
ie.,

be—b+J'g (A2)

where g is the vector of first-order partial
derivatives of the sum of L’s with respect
to the b vector. At convergence, J is the
covariance matrix of the first-order partial
derivatives, while J™' is the covariance
matrix of the parameter estimates.

To simplify notation, recall that the
models of the standard force of mortality
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which we have considered can be written
in the general form:

= exp (b*" w), (A3)

where w is the vector of independent vari-
ables specific to a given model and b* is
the vector of linear coefficients. We also
need the following definition:

§=exp (—H). (A4)

From (A.3) and (A.4), it is apparent that
the denominator terms in (A.1) can be ex-
pressed as:

u 5% = exp (b** w — H/k), (A.5)

which suggests that the vector b in (A.2) is
of the form:

b” = (b*, k). (A.6)

By substituting (A.5) in (A.l), we find
that the components of g associated with
the log likelihood for each element of b
are of the form:

B
u jl/k}

oL
ab*
(A7)

bld, 5, i) = —d (k + D) w, [1 -

aL . .1

+d{1n(ﬁ—%) + [1 - ﬁ%}}

—d(k+1)g[l—ﬁ—%] (A.8)

Similarly, the components of J associ-
ated with the log likelihood for pairs of
elements of b are of the form:

OL( ) dL( )| _
E[W ab* _—d(k+l)w,.w,
(A9)
OL( ) OL( )| _ 7 /12
E[ e | =G Dw Ak

(A.10)
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OL( ) 8L( )
£
Jig
=2(k—il);+d(k+1)F~ (A.11)

From (A.6), we see that there are at
least two parameters associated with the
log likelihood for each observation.
Hence, constraints must be imposed on
the parameters in order to achieve unique
parameter estimates. This implies that the
elements of g corresponding to a given
parameter will be the sum, over those ob-
servations for which the parameter is con-
strained to be equal, of terms of the form
(A.7) or (A.8). Similarly, the elements of
J corresponding to a given pair of param-
eters will be the sum over those observa-
tions to which both parameters apply, of
terms of the form (A.9), (A.10) or (A.11).

Model Testing

When dealing with alternate models
describing the same phenomena, one usu-
ally needs to have some statistic by which
both the relative performance of each
model and the absolute level of fit may be
assessed. For hierarchical models, we can
employ the likelihood ratio x> approxima-
tion:

=2 2 [L(b.|d, 5, ) — Libi|d; 5, )],

(A.12)

where n is the number of observations
and where b, and b, are the parameter
vectors for the two models being com-
pared. For this test to be appropriate, b,
must represent a “subset” of b,, i.e., impo-
sition of constraints on b, must lead to b,.
For example, the age specific standard
force of mortality model may be con-
strained to reproduce the Gompertz
model. When the test can be performed,
the degrees of freedom are given by the
number of constraints imposed on b, to
reproduce b,.
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