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INTRODUCTION

Population scientists frequently study the dynamics of mortality, fertility,
and other life-history traits in populations that are heterogeneous along a
theoretically important dimension that is not directly observed. Geneticists
and genetic epidemiologists, for instance, emphasize genotypic variability.
Although every individual has a genome and although great progress is
being made in mapping genes, in most studies an individual’s specific
genetic makeup is unknown. Similarly, demographers assume that there are
persistent differences among women in their fecundity: some women, at any
specific age and controlling for all observed covariates, are more likely
to conceive than others (Sheps and Menken, 1973). More generally,
demographers, labor economists, epidemiologists, ecologists, and other
population scientists assume that there are persistent differences among
individuals in their susceptibility, propensity, or relative risk with regard,
say, to death, disease, divorce, unemployment, migration, etc. Although
some explanatory covariates may be observed, there is often an
unmeasured “frailty” component of this relative risk (Vaupel, Manton, and
Stallard, 1979).

Theoretical studies of the aggregate dynamics of heterogeneous popula-
tions start with an assumed distribution of subpopulations and an assumed
life-history pattern for each of these subpopulations and then derive the
life-history pattern for the entire population. Such studies have been very
important in developing genetic theory (e.g., Ewens, 1979, or Falconer,
1981) and some progress has recently been made in developing a similarly
detailed understanding of the fertility and mortality dynamics of
heterogeneous cohorts of individuals who differ in their fecundity or frailty
(e.g., Sheps and Menken, 1973; Vaupel, Manton, and Stallard, 1979;
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Keyfitz. 1985: Vaupel and Yashin. 1985a. b: and Vaupel. Yashin, and
Manton, 1988).

The converse endeavor of trying to decompose observed population
dynamics into two components—a distribution of subpopulations and the
dynamics of the subpopulations—-has been more difficult and problematic
(Trussell and Rodriguez, 1989). As in the development of theory,
geneticists have achieved far more in their empirical work than
demographers and cconometricians, although brave attempts by, eg.,
Manton. Stallard. and Vaupel (1981, 1986), Heckman and Singer (1984),
Trussell and Richards (1985). and Aalen (1987) might be noted.

Genelticists have been relatively productive and successful in their empiri-
cal studies of hidden heterogeneity because they ground their models in
cogent theories of how genes are transmitted and then apply these models
to data scts on related individuals. Demographers and econometricians
have not. by and large, developed comparably powerful theories and have,
in nearly all frailty analyses, used data on unrelated individuals and events.

Demographers and econometricians, however. may have something to
contribute because they have developed methods that are based on modern
statistical techniques of survival analysis and frailty modeling. Geneticists,
in contrast, usually rely on classical methods of the decomposition of
variance. a2 much less rich and multifaceted approach that may encourage
unrealistic assumptions and invite misinterpretation (Feldman and
Lewontin, 1975; Vaupel. 1988). Life history traits can usually be viewed as
durations —time to death, to onset of illness. to divorce, to next birth, to
reemployment, etc. Instead of analyzing such traits using the same method
of decomposition of variance used to analyze such static phenotypic
characteristics as birth weight, number of vertebrae, or thorax length,
geneticists and genetic epidemiologists may gain some deeper insights by
exploiting the additional information provided by survival data.

A hybrid approach to life-history analysis that combines biological
theory, data on related individuals and events. and methods of survival
analysis and frailty modeling thus seems to be a logical step forward. [t
turns out that some relevant spade work toward developing such an
approach has been done by Weiss (1989). Heckman and Walker (1987),
Vaupel (1988), and a group of biostatisticians, including Holt and Prentice
(1974), Clayton (1978). Oakes (1982), Wild (1983}, Clayton and Cuzick
(1985), and Hougaard (1986b. 1988), whose research on methods for
multivariate survival analysis is reviewed by Hougaard (1987).

This article builds on this body of research to develop a method for
applying frailty models based on biological theory to life-history data on
related individuals and events. A companion article (Vaupel, 1989) locuses
on applying this method to mortality patterns by using data on twins,
parents and children, and other related individuals. A second companion
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article (Larsen and Vaupel, 1989) applies the method to a repeated
event—a woman’'s successive births—in an analysis of Hutterite fertility
patterns.

This article, in contrast, is terser, broader, and more abstract. It
concisely summarizes the essence of the proposed method and then
adumbrates some illustrative applications. The article concludes with a
brief discussion of the three general purposes of frailty modeling of life
history data.

GENERAL RESULTS

Let T, be the duration of individual i in group j, i=1, ... I, j=1,..,J,
let the indicator &, equal 1 if T, is a death time and 0 if 7, is an uninfor-
mative right censoring time, and let x,; be a vector of observed covariates
that may vary over time (Kalbfleisch and Prentice, 1980, Cox and Oakes,
1984). Further suppose that the hazard of death at duration ¢ is z;A;(1),
where z; is the frailty of group j and A, is a function of x; (Vaupel,
Manton, and Stallard, 1979; Hougaard, 1984). Let g}’(z) be the prior
probability density function (p.df) of z; when no survival data are

available; in many applications the same g° will hold for all the groups. Let

.‘.(’) = fo Alu) du

denote the survivorship function. Note that, as here, the indices i and j will
often be suppressed.

In addition to these customary functions and variables, it will be
convenient to:
— let S denote the survival data for a group, i.e., the set of survival
times T, .., T, and corresponding &'s and x’s,
— let m denote the number of deaths in a group,

!
m=3 4, (1)
i=1
— let M denote the total cumulative hazard for a group,

I i
M=y jr 1,(1) dt, ()

0

i=1

— let 1 denote the total log hazard at observed death times for a
group

!
h=S 8logA(T), (3)

i=1
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and

- let g'(M.m) denote the integral transform

g' (M. .m)= [ e Mg'(z)d-. (4)

h ]

The likelihood of the survival data for all the groups combined is simply
the product of the likelihoods for the various groups. It turns out that a
simple formula gives these likelihoods.

LeMMA 1. The likelihood of the survival data S for a frailty group is

P=¢" g (M. om) (5)

Proof. 1t follows from. e.g., Kalbfleisch and Prentice (1980) or Cox and
Oakes (1984), that the probability of the survival data given = is

!
L=T1 (2T )y ee Josand (6)

i=1

Furthermore,

¥ = 'M S.e"(z) d-.

-0

Rearranging terms and substituting (1), (2), (3). and (4) yields (5). ]

The likelihood in (5) can be viewed as a generalization of ordinary
survival analysis and frailty modeling. If a single frailty group comprises
the entire population. (S) can be interpreted as a Bayesian approach to
estimating the level of the hazard function. If, further, therc is no
heterogeneity in frailty. - can be set equal to one for everyone and g'
collapses to e ': the likelihood in (5) is then equivalent to the standard
survival analysis formula. If there is heterogeneity in [railty but observa-
tions arc on unrclated individuals or events, then each frailty group
consists of a single individual: (5) is still valid, with m being either 0 or 1.

Another simple formula describes how g° should be updated based on
the available set of survival data.

LEMMA 2. The pd.f. of - conditional on S is given by the two-dimensional
Samily of distributions

gz M, m)y==z:"e “g'(z)/g"(M.m). (7)
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Proof. Starting with Bayes’ Theorem,
Pr(z|S)=Pr(S|z)- Pr(z)/Pr(S).

and substituting (6) for Pr(S|:z), g%:) for Pr(z), and (5) for Pr(S)
yields (7). |

Using this lemma it is easily shown that the mean and higher moments
about the origin of g(=; M, m) are given by

E(z"y=g" (M, m+r)/g" (M, m).

Let 5(r) denote the survivorship function for some frailty group with
survival data summarized by M and m,

5(t) = J’: s(1lz) gl(z; M, m) dz.

where the multiplicative relationship z2 implies that
s(t]z) =s(1) .
Then it follows from Lemma 2 that

g'(M—logs(1), m)

s(r)= g'(M, )

Let /(1) be the hazard function for this frailty group,
£
An=— %/E(I).
Then

g'(M —log s(t), m + 0]

;. =
) g'(M, m)

A1)

This is equivalent to Vaupel, Manton, and Stallard’s (1979) result that
Ary=z(r) M),

where Z(r) is the mean value of frailty among survivors alive at age (.
Two other uscful results are proven in Vaupel (1989). The first gives the
likelihood of kindred frailty models with independent competing risks: as
in ordinary survival analysis, any particular risk can be analyzed as if it
were the only risk, with deaths or attrition from other causes being treated
as censored cases. The second formula gives the likelihood of kindred
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frailty models with competing risks when the cause of death is not
observed. Such models. which add a third layer of obscurity to censoring
and hidden frailty. turn out to be useful in studies of relatives who share
some but not all of their genes and in situations where frailty may be
changing with age.

FRAILTY DISTRIBUTIONS AND TRANSFORMS

Following Hougaard (1984), g(=: M. m) will be called a frailty distribu-
tion. It can be viewed as a two parameter exponential family, in - and
log z. of distributions g”(z). The integral transform g'(A, m), “g dagger.”
might be called a frailty transform. When m is zero g' is equivalent to a
Laplace transform (and closely related to moment generating functions);
when M is zero, g' is equivalent to a Mellin or - transform. The transform
can also be viewed as a two dimensional Laplace transform in - and log -.
Note that

g M. )y =(=1)y" g (M. 0) oM™

Frailty distributions and transforms can also be gencrated when g" is
discrete. with the integral in (4) being replaced by a summation. The two
lemmas still hold. Furthermore. the results can be extended to some
distributions defined on the entire real line (c.g.. the normal distribution)
although such distributions can only be used as approximations in frailty
models since [railty cannot be negative. Finally, the results arc readily
extended to the more general proportional hazards model f;(z)) 7, (1),
where, e.g.. f(z,) could be e or =}.

Using numerical methods. g and g* can be approximated for any initial
distribution g". Exact expression can be derived for a variety of continuous
and discrete forms.

Suppose, for instance. that g° follows a gamma distribution, as assumed
by Beard (1963). Vaupel. Manton, and Stallard (1979), Clayton (1978),
Oakes (1982), Wild (1983), Clayton and Cuzick (1985), and others:

gz a k) =afF e ¥/ (k). (8)
Then it is readily shown that
gl M.m)=g"(zix+ M, k+m) (9)

and

. Itk +m) o+
g ‘ , ’”) l“k) (1 + M'l\ 4 m
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In some Bayesian analyses it may be appropriate to assume that glisa
flat, continuous prior such that gz,)= g%z,), all z,, z,>0. Then it is
clear from (7) and (8) that g(z; M, m) is a gamma distribution with shape
parameter K =m+ 1 and scale parameter «a = M. Because k is an integer,
this gamma distribution is equivalent to an Erlang distribution (Hastings
and Peacock, 1974). The mean value of = is (m+ 1)/M; the most tikely
value of = is m'M; and the variance of = is (m + 1)/M?2.

Hougaard (1986a) introduced a family of distributions derived from the
stable distributions that includes the gamma distribution as a special case.
It is convenient to describe this family by its Laplace transform:

e{l {14 calpgiz]l" “'}/u‘-»—nn’/:‘l] if c#£0 l,
g (M, 0) = etFrehter M 1) il ¢=0,
[l +(a¥z) M) & il =1,

where I is the mean, o is the variance, and ¢ is a third parameter.
Hougaard (1986a) focused attention on values of ¢ greater than or equal
to one and noted that when ¢ is one the distribution is gamma and when
¢ is two the distribution is inverse Gaussian. Aalen (1988) showed that
when ¢ is between zero and one, the distribution is compound Poisson.
Other values of ¢ may also be of interest: e.g., when c is zero the distribu-
tion is Poisson and when ¢ is minus one the distribution is normal. In any
case, it can be shown that g'(M, m) is given by

2 (M. m)=g’(M‘0)-< X k,,..~c<M)’*‘"“""'),

=1
where the coefficients k can be recursively calculated using the relationship
Kim=Ki ym 1+ (@2 i+ m=1—i)e) -k, i=1,.,m,

with the convention that k,,,=0 and k,,,,,, =0, all m, and starting
condition k,; =1, and where {(M), which is equal to the mean of the
distribution g(z: M, 0), is given by

5 2aq/57 - Ve :
con={Z LMo
Ze il ¢c=0.

Hougaard (1986a) derived his family of distributions from the stable
distribution, the use of which is discussed by Hougaard (1986b, 1987) and
Aalen (1987, 1988). The g' transform is readily calculated for the stable
distribution, as well as for such other continuous distributions as the
uniform distribution and the noncentral y? distribution.
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For some applications it may be appropriate to assume that g" is dis-
crete. For instance, suppose g” follows a 2-point distribution, as assumed
by Blumen, Kogan, and McCarthy (1955), Shepard ad Zeckhauser (1980),
Trussell and Richards (1985), Vaupel and Yashin (1985b). and others:
where

g'z)=p,. O<p,<l.n=1,2,
with 32 | p,=1. Then
gz M omy=p,ve Mg M,m),  n=1,2, (10)

and

gUM.m) =Y pzre =V

n=1

These two formulas immediately generalize to N-point distributions.

Finally, consider two other discrete distributions. the binomial and the
negative binomial. The Laplace transform of the binomial distribution with
parameters p and n is

g (M 0)=(pe M +1-p).

It follows that

m

gUMmy=Y k- (mn—il)-p e ™ (pe M41-p)

=1
where the coefficient k can be recursively calculated by
k.m = k: clm - ) + ikl.m— I

with the convention that k,,,=0and k,,, , ,, =0, all m, and starting condi-
tion k,, = 1. The Laplace transform of the negative binomial distribution
with parameters n and x can be written

gUM. O =(pe Y +1- p),

where n= —x and p= — n/(1 — n). Because this transform is the same as
the transform used above for the binomial distribution. the same formula
holds for g".

Note that for some of these distributions, including the Poisson,
compound Poisson. binomial, and negative binomial, there is a finite
probability that an individual's frailty is zero. implying the individual is
immortal. This might be true in survival analysis of hazards that do not

o —p
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affect everyone: e.g., some individuals may be immune to certain diseases,
never give birth, never get married, never emigrate, never learn Chinese, or
never start to smoke.

APPLICATION: HUTTERITE FERTILITY

Larsen and Vaupel (1989) used the general method described above to
analyze the pattern of effective lecundity (ie.. monthly probability of live
birth conception) over age for 419 Hutterite couples who had 3206 live
births. In one of their models, the hazard of a live-birth conception at age
1 and parity (i.e.. number of live births) i for woman j is

/.'l/(t) = :/¢i Yj(l) )"o(t)a

where z; denotes fecundity (i.e., frailty), ¢ describes the effect of parity, Y
is an indicator that is zero if the couple is sterile at age 1 and one otherwise,
and A" describes the baseline hazard over age. Note that frailty groups
consist of repeated cvents rather than related individuals,

The function ¢, was estimated by a piecewise linear function with bends,
in one run of the model, at parities 2, 3, 4, 8, and 15. Similarly, 1°(1) was
estimated by a piccewise linear function with bends, in one run of the
model. at ages 20, 25, 30, 35, 40, and 45. Two different distributions were
used for the prior distribution of frailty g°(z): a gamma distribution and a
2-point distribution.

Using this model, Larsen and Vaupel (1989) found that the prevalence
of sterility increased sharply with age after age 40, that the hazard of a
live-birth conception declined substantially as parity increased, and that,
controlling for the effect of parity, the hazard of live-birth conception
among fecund (i.e,, non-sterile) couples was approximately level over age.
This level was about 0.15 per month for a standard couple with frailty one.
The variance in frailty was roughly 0.5; models with heterogeneity in frailty
fit the data significantly better than corresponding homogeneous models.

APPLICATION: LONGEVITY OF TWINS

In studies of genetic and early environmental components of the
longevity of twins, the frailty z; of a MZ twin pair might be defined as the
relative risk the two twins share (Hougaard, 1986b). Data are available on
the day, month, and year of birth and death of Danish twins born from
1870 through 1930 (Hauge er al, 1968; Holm, 1983) and a proposal to
analyze these data has been prepared by Vaupel e al. (1988). To explore
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the estimability of frailty models applied to Danish twin data, § mortality
data sets were generated that might resemble the actual data set for Danish
male MZ twins. It was assumed that for twin pairs unbroken at age 35
mortality rates werc given by the Gompertz trajectory i(t)=a
exp( —pv + br). where 1 is age, v is the birth cohort (varying from zero in
1870 to 60 in 1930), a determines the level of mortality, p is the rate of
progress in reducing this level, and b determines how quickly mortality
rates increase with age. In the simulation. a was 0.0002, b was 0.10, and p
was 0.01. Frailty was assumed to be gamma distributed with a mean of |
and a variance of 0.25: in the simulation, the inverse of the variance, k, was
used and set equal to 4. The data set generated consisted of 15 twin pairs
in the 1870 cohort, gradually increasing to 45 twin pairs in the 1930 cohort.
The last year of observation was 1991: all survivors were censored at this
time.

Parameter values were then estimated from the simulated data using the
likelihood function in (5). The results are given in Table I. Reassuringly,
the parameter estimates are close to actual values, with no evidence of
important bias. and the estimated SD's are consistent with the SD’s of the
estimates. This suggests that if the longevity of twins can be captured by a
frailty model, then it may be possible to estimate the parameters of this
model using a data set such as the Danish twin register.

TABLE |

Comparison of Actual and Estimated Parameters of Five Simulated Data Sets
Generated by the Frailty Model Described in the Text

Parameters
a b p k a’
Actual Values 0.0002 0.1 0.01 40 0.25
Fstimated values and (SDs):
Data Set | 0.00019 0.101 0.0107 3.87 0.26
{0.00002) (0.002) (0.0015) (0.49)
2 0.00019 0.098 0.0081 4.70 0.21
(0.00002) (0.002) (0.0015) (0.69)
3 0.00023 0.102 00130 410 024
{0.00003) (0.002) (0.0015) (0.57)
4 0.00022 0.102 00125 3150 0.29
(0.00003) (0.002) (0.0016) (0.43)
5 0.00019 0.099 0.0090 400 0.25

(0.00002) (0.002) (0.0015) (0.53)
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APPLICATION: STOPPING CLINICAL TRIALS EARLY

In a clinical trial of a new therapy, the trial may be stopped early if the
probability of death (or other adverse consequence) sufficiently exceeds
that for the standard therapy (Berry, 1985, 1987, 1989; Canner, 1977,
1984). Suppose that the hazard function for the standard therapy is known
to be

}(l \,) =(,0.()0|I+0.5\'—— 5

’

where 1 represents days since initiation of therapy and x is a covariate (e.g.,
an index of age or severity) related to the level of mortality. Furthermore
suppose that the hazard function for the new therapy is assumed to be

A, x)=z-2(1, x),

where = is an uncertain quantity with prior probability distribution g°(z).
Finally, suppose that 6 patients have received the new therapy, with the
interim results shown in Table II. As the table indicates, three patients are
still undergoing treatment (or have withdrawn) and three patients died.

Is this new therapy a menace? The probability distribution of z can be
calculated, if the prior distribution g"(z) is given. Methods are available for
assessing g" (Chaloner and Duncan, 1983; Spiegelhalter and Freedman,
1986). For illustrative purposes, consider two possibilities:

(1) g% is a two-point distribution such that £"(0.5)=09 and
£"(1.5)=0.1.

(2) g° represents a flat, continuous prior such that g%(z,) = g%@z,), all
I, 5> 0

The data in Table II indicate that M is 4.94 and m is 3. Using (10) and
the two-point prior it is readily calculated that £(0.5; M, m)=0.998 and

TABLE I

Interim Data for Six Patients Receiving a New Treatment

Paticnt Days in Study Dicd? Value of Covariate
| 60 yes 12
2 100 no 03
3 10 yes 0.1
4 50 yes 32
5 80 no 1.7
6 30 no 0.5
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gtL5 M, m)=0.002. For the Nat prior, as discussed earlier. glzi M, m)
follows an Erlang distribution: calculations indicate that the mean is 0.81
and

Priz>1)=¢ Y-y MYi'=027.

=0

Thus, the interim data suggest that the risk of the new therapy is less than
that of the standard therapy, despite the three deaths.

Discussion

Frailty modeling of survival data has three broad. overlapping purposcs:

(1) Sometimes the distribution of frailty is of secondary interest;
indecd, frailty may be a nuisance parameter. Frailty is nonetheless impor-
tant because if it is neglected, estimates of the parameters of interest may
be biased (Holt and Prentice, 1974; Gail ¢f al., 1984: Heckman and Singer,
1984: Morgan, 1986; Struthers and Kalbfleisch, 1986: Heckman and
Walker, 1987 Lagakos, 1988: Bretagnolle and Huber-Carol, 1988).

(2) In other analysis it is the initial distribution of frailty and the
shape of the hazard function over time that are of interest; covariates may
not even be included in the analysis. The applications to the fertility of
Hutterites and to the longevity of twins given above are cases in point;
other examples are in Manton, Stallard, and Vaupel (1981, 1986).

(3) Finally, some research focuses on estimating the distribution of
the frailty z, for a frailty group conditional on the available survival data.
An example is the application to clinical trials given above. More generally,
this use of frailty modeling pertains to any situation where individuals can
be divided into discrete groups (e.g., treatment or risk groups with propor-
tional hazards) and estimates are needed of the relative risk of each group
(with regard to failure, cure, conception, unemployment, etc.). These very
broad areas of application can be viewed as a Bayesian alternative to
classical methods of statistical analysis of survival data.

The results presented above are of direct use in applications of this third
type and in applications of the first and second types when individuals or
events can be grouped. Frailty modeling of kindred survival data has at
least two advantages over the more usual applications to unrelated
individuals experiencing a single duration. First. the definition of frailty is
clear: a group's frailty is the relative risk shared by all members of the
group. With data on unrelated individuals and events, it is sometimes
difficult to precisely specify which of the multitude of unobserved risk
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factors are included in frailty and which are left to generate the distribution
of dcath times given a particular frailty valuc. Second, in statistical
inference it may be possible to produce more accurate estimates with
smaller data sets if there are multiple indirect sightings on the hidden frailty
covariate that has to be accounted for.

The main result of this article is the derivation of expressions for the
likelihood of kindred survival data and for the distribution of frailty condi-
tional on these data. The proofs are almost obvious and the expressions are
simple in form: the entire history of survival data on grouped individuals
or repealed events, with covariates and a mixture of death times and
censoring times, can be summarized by three statistics, the total log hazard
at observed death times A, the total cumulative hazard M, and the number
of deaths m. This simplicity and the range of applications suggest that more
attention should be given to frailty modcling of kindred survival data. In
particular, since kindred frailty modeling can be viewed as a hybrid of the
divergent approaches used by geneticists and demographers 1o analyze life
histories and since, as illustrated more fully in Vaupel (1989) and Larsen
and Vaupel (1989), kindred frailty models can be based on biological
theories and observations, the method may serve as a productive focus for
interdisciplinary research in the population sciences.
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