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Short Report

A logistic regression model for measuring
gene–longevity associations
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The logistic regression model is a popular model for data analysis in
epidemiological research. In this paper, we use this model to analyze
genetic data collected from gene–longevity association studies. This
new approach models the probability of observing one genotype as a
function of the age of investigated individuals. Applying the model to
genotype data on the TH and 3�ApoB-VNTR loci collected from an
Italian centenarian study, we show how it can be used to model the
different ways that genes affect survival, including sex- and age-specific
influences. We highlight the advantages of this application over other
available models. The application of the model to empirical data indi-
cates that it is an efficient and easily applicable approach for determin-
ing the influences of genes on human longevity.
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Over the last few decades, interest in studying the
association between genes and human longevity
has grown (1). There have been reports on impor-
tant genes that contribute to the process of human
aging and longevity, such as the ApoE gene (2–6).
As for statistical methods, most of the studies are
based on a case–control design by which allelic or
genotypic frequencies are compared between cases
(usually centenarians) and controls (younger peo-
ple from the same population) to see if significant
differences exist between the allelic or genotypic
pools. A new procedure that combines individual
genotypic information with demographic informa-
tion has recently been proposed and applied to
data collected from Italian (7–10) and Danish (11)
centenarian studies. Based on the proportional
hazard assumption, the new procedure can, not
only estimate the relative risk of the gene or geno-
type, but can also incorporate gene–environment

(9, 10) and gene–sex (11) interactions that con-
tribute to the modulation of individual survival. In
this new procedure, subjects are no longer divided
into cases and controls, since individual survival
information is fully utilized in the parameter esti-
mation, thereby increasing the efficiency of the
model (10, 11). However, users of the new proce-
dure require training in computer programming
and mathematical statistics in order to ensure a
proper application. It is important to note that the
new procedure is not capable of modeling geno-
type frequency that changes non-monotonously
with age, since it is limited by its proportional
hazard assumption.

The logistic regression model is popular in epi-
demiological studies since it can model dichoto-
mous-dependent variables as a function of a set of
continuous or categorical predictor variables. In
this paper, we shall explore the feasibility of apply-
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ing the logistic regression model to estimate the
probability of observing one genotype as a func-
tion of age, assuming that frequency of the geno-
type that affects individual survival should change
in the genotypic pool with advancing age. Empiri-
cal data taken from an Italian centenarian study
(12, 13) will be used to show how the model can be
implemented to cope with different situations con-
cerning the observed age-related pattern of the
genotype frequency. In the Discussion section we
compare this model with other models that are in
use in gene–longevity association studies and high-
light the important features of the present
application.

Materials and methods
Data

The individual genotype information is taken from
a multicentric longevity study that was started in
1995 in Italy. A total of 12 polymorphic loci were
analyzed (10, 12, 13). In this paper, we select two
highly polymorphic markers, HUMTHO.1-STR at
the tyrosine hydroxylase (TH) locus and 3�APOB-
VNTR at the apolipoprotein B (APOB) locus, in
order to demonstrate how the model can be ma-
nipulated to deal with different patterns of gene
action. The HUMTHO.1-STR dataset comprised
555 genotypic records from two groups of subjects:
197 centenarians and 358 individuals aged 10–84.
The 3�APOB-VNTR dataset comprised 787 geno-
typic records from two groups of subjects: 190
centenarians and 597 individuals aged 10–84. De-
tails on the criteria of recruitment and on the
molecular genotyping procedures are provided in
De Benedictis et al. (12–14).

The HUMTHO.1-STR polymorphism included
six alleles varying from 6 to 11 repeats of the
(AAGT) core sequence (alleles 6, 7, 8, 9, 10, 11).
The 3�APOB-VNTR polymorphism included 15
alleles varying from 26 to 55 repeats of a dimeric
AT-rich core sequence (basic repeat unit of 15 bp).
According to size and frequency patterns (13),
3�APOB-VNTR alleles were grouped into three
categories, Small (S; less than 35 repeats), Medium
(M; 35–39 repeats), and Large (L; more than 39
repeats).

Method

The basic model. If a genotype is associated with
individual survival, the probability of observing it
in a population in Hardy–Weinberg equilibrium
should change with increasing age as a result of
survival selection. In this case, we can introduce
the logistic regression to model the probability of

observing a genotype in the population (the geno-
type frequency) as a function of the participants’
ages. That is,

Pr(G=1)=
1

1+exp[− (�0+�1x)]
(1)

In [1], G denotes the genotype in question. For an
individual carrying the genotype G=1, otherwise
G=0. �0 and �1 are parameters to be estimated, x
is the age of the subject at the time of the study. In
[1], the gene longevity association is determined by
testing H0: �1=0. Once the coefficients in [1], �0

and �1, are estimated one can calculate the proba-
bility that carriers of the genotype can be found in
a population aged x, i.e., the genotype frequency at
age x. If the gene does not affect individual sur-
vival, i.e., �1=0, then [1] becomes

Pr(G=1)=
1

1+exp(−�0)
(2)

a constant that represents the initial frequency of
the gene and that does not depend on x. [2] can be
used to calculate the gene frequency at birth since
it is a special case of [1] when x is zero. When �0 is
zero in [2], Pr(G=1)=0.5. This means that a test
of the constant �0=0 is equivalent to a test of
Pr(G=1)=0.5. Thus, the significant test on the
constant usually ignored by most traditional re-
gression analysis is of some special meaning in this
application. Rewriting [1] in the logit form and
substituting Pr(G=1) with p for simplicity, we
have

ln
p

1−p
=�0+�1x (3)

In [3], a significantly positive �1 increases the prob-
ability of observing carriers of the genotype as age
x increases. Likewise, a significantly negative �1

reduces such probability with advancing age x.

Modeling sex-specific effect. By specifying two dif-
ferent �1s for males (�1,m) and for females (�1,f),
one can try to find sex-specific effects or gene–sex
interactions for the gene of interest. When we are
dealing with autosomal genes, �0 should be the
same for both sexes since it represents gene fre-
quency at birth. Then we have

ln
p

1−p
=�0+�1,mxU+�1,fx(1−U) (4)

In [4], U is an indicator for sex, U=1 for males
and 0 for females. After fitting the model, one
needs to check if the two sex-specific parameters,
�1,m and �1,f are statistically different or not. This
can be done by comparing the parameter estimates
with a consideration of their standard errors.
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When �1,m and �1,f are significantly different, we
know that the effect of the gene is sex-dependent.
Otherwise, we say that, as revealed by the data,
there is not enough evidence to show that the gene
has a sex-specific influence on survival. In this case,
we can simply combine data for the two sexes and
fit [3].

Modeling age-specific effect. In case of a non-linear
relationship in [3], new function forms for x can be
added to the left-hand side of the equation. Since
only one independent variable is considered, age x,
the non-linear relationship can be approached by a
polynomial model, in that [3] can be rewritten as

ln
p

1−p
=�0+ �

k

i=1

�ixi (5)

However, the k-order polynomial model in [5]
means that there will be k+1 parameters to be
estimated. When sample size is small, an effort
needs to be made to limit the number of parame-
ters. In our application, we add to [3] a new term
with coefficient �2 and non-linear transformation
of x, i.e.

ln
p

1−p
=�0+�1x+�2xk (6)

In [6], k transforms the variable x to satisfy the
non-linear relationship. A proper k has to be cho-
sen to ensure the maximum likelihood of the ob-
served data. One has to notice that when such a k
is chosen, the remaining parameters are then maxi-
mized via a maximum likelihood estimate (MLE).
In this case, the standard errors on the remaining
parameters would be underestimated. One needs to
be careful when making a conclusion on a parame-
ter concerning its significance level. In principle, all
of the parameters should be estimated in the likeli-
hood framework, especially when a large sample
size is available.

By examining the statistical significant level of
�2, one can decide if the model with an age-specific
effect is necessary. When k is an MLE, the likeli-
hood ratio tests with 2 degrees of freedom could
also be used to determine if the model with age-
specific effects is appropriate, since as one can see
model [6] and model [3] are fully nested.

The odds ratio. An important parameter in the
logistic regression is the odds ratio, which provides
information about the relationship of the predictor
variable to the dependent variable. Note that the
left-hand sides of [3] and [6] are natural logs of the
odds p/(1−p). The odds by definition are the ratio
of the probability of observing the genotype di-
vided by the probability that the genotype is not

observed. In [3], the odds ratio of age x to age
x−1 can be calculated as

ORx/x−1=
e�0+�1x

e�0+�1(x−1)=e�1 (7)

The odds ratio calculated from [7] is independent
of age x, which means that the genotype has a
constant influence on life span over all ages. This is
similar to the situation with the proportional haz-
ard model, which assumes that the relative risk of
one observed genotype is proportional to the base-
line hazard function (7–10). In the same manner,
we can calculate the odds ratio for [6] as

ORx/x−1=
e�0+�1x+�2xk

e�0+�1(x−1)+�2(x−1)k=e�1+�2(xk− (x−1)k)

(8)

This time it depends not only on the coefficient �1,
but it is also a function of age x. Such a relation-
ship is important since there is evidence in
longevity studies indicating that some genes can
function differently at different ages (2, 13). The
age-specific gene action is in accordance with the
evolutionary theory of aging, cf. antagonistic
pleiotropy. With the relationship in [8] it is possible
to model the non-monotonous age dependence of
genotype frequency. This important feature of the
application will be demonstrated later in data anal-
ysis of the ApoB gene.

We used standard SPSS9.0 software for the lo-
gistic regression and Axum5.0 (15) for graphic
presentations.

Results

Before fitting the model, we plotted genotype fre-
quency by age to see if a non-monotonous pattern
of age dependence exits. This can help to decide
whether model [3] or model [6] is the proper
choice. Grouping individuals according to their
age at the time of participation and calculating the
gene frequency for each group, no extraordinary
pattern was found for polymophisms at the TH
locus. This indicates that a linear model could be
applied. We first fit [4] to the data in order to see if
there is any sex-dependent effect from each of the
alleles. In fitting the model we define the event as a
carrier of the allele. The results in Table 1 show
that there is only one allele, TH10, with significant
influence on females (p=0.002) but not on males
(p=0.288). However, when we compare �1,f with
�1,m from the fit, they are not statistically different.
At this point, we cannot conclude that there is a
sex-specific effect from this allele. In Table 1, we
only show the estimates with standard errors for �0

since it makes no sense to test its statistical signifi-
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Table 1. Parameter estimates for TH gene allele carriers by sex

�0 SE �1,m SE p �1,fAllele SE p

−0.132 0.175 0.001 0.003 0.680THO6 −0.001 0.003 0.715
−0.536 0.185 −0.004 0.004 0.315THO7 −0.004 0.003 0.191
−1.384 0.215 0.005 0.004THO8 0.218 −0.001 0.003 0.728
−0.212 0.178 −0.005 0.003 0.184THO9 −0.005 0.003 0.057
−0.867 0.185 0.004 0.003THO10 0.288 0.008 0.003 0.002
−2.788 0.398 −0.009 0.009 0.336 −0.001 0.006 0.883THO11

cance. Knowing there is no sex-dependent effect,
we then fit [3] to the combined data. The results
are presented in Table 2. Again, we see that only
allele 10 manifests a significant affect that favors
the carrier’s survival (p=0.006). By redefining the
event as homozygote of one allele, we can use [3] to
detect if there is recessive effect from that allele.
However, before fitting the model, one has to
make sure that the corresponding heterozygous
genotype has no effect. This is true for all the other
alleles except TH10 in Tables 1 and 2. We fitted [3]
to alleles 6, 7, 8, 9, and 11 homozygotes but only
allele 9 showed �1= −0.020 with a p value of
0.024, which means allele 9 homozygote tends to
be an unfavorable genotype. Unfortunately, when
multiple comparisons are considered, this p value
is beyond significance.

According to [7], the odds ratio for two adjacent
ages can be calculated as e7.2e−3=1.007 for allele
10. One can see that the odds ratio is only trivial
since it is very close to one. However, one has to
bear in mind that it only stands for an age interval
of 1 year. If one considers an interval of 30 years,
we then have

ORx/x−30=
e�0+�1x

e�0+�1(x−30)=e30�1

in accordance with [7]. In this case, the odds ratios
for allele 10 carriers will be 1.241, which represents
quite remarkable changes in its frequencies.

In Table 2, we also calculated the frequencies of
carriers at birth (p0) concerning each allele using
[2]. Note that it does not represent the proportion
of carriers in the population as a whole when the
corresponding allele is associated with survival. In
this case, the carrier’s proportion in a given popu-
lation depends on the age structure of the popula-
tion. With known frequency of carriers at birth,
one can calculate the allele frequency easily, using
the relationship between the frequency of carriers
(p) and frequency of the allele (p�). From Table 2,
we have p=2p�(1−p�)+p�2=1− (1−p�)2. Rear-
ranging it, we have p�=1−�1−p. Consider al-
lele 10, for example, the allele frequency is
1−�1−0.289=0.157. By introducing the

parameter estimates into [1], one can calculate the
proportion of carriers as a function of age x, as
shown in Fig. 1. For comparison, we plotted the
frequencies for allele 8 carriers in Fig. 1a, which
does not show a significant association with
longevity (Table 2). The estimated frequency is
almost constant over age. In contrast, both the
observed and the estimated frequencies of carriers
of allele 10 increase with age in Fig. 1b.

In Tables 1 and 2, we observe only one signifi-
cant allele (allele 10). One could argue that it could
be a result of chance since there are many tests
conducted in each table. In this case, the signifi-
cance level should be adjusted using Bonferroni’s
correction in order to avoid false positive results.
In Table 1, there are a total of 12 tests concerning
the effects of the six alleles in both sexes. The new
significance level is adjusted as 1− (1−0.05)1/12=
0.004. The p value for allele 10 in females is
0.002, which means that it is still significant
even after adjustment. In Table 2, we have con-
ducted six tests each for one allele. Then we have
1− (1−0.05)1/6=0.009 as the new significance
level. Again, we see that the p value obtained from
Table 2 (0.006) is smaller than the adjusted
threshold meaning a statistical significance.

An analysis of the 3�APOB-VNTR polymor-
phism by De Benedictis et al. (13) revealed a sig-
nificant convex trajectory of the S/S genotype
frequency by age. Here, we fitted model [6] to the
3�APOB-VNTR S/S genotype by choosing differ-
ent values for parameter k in order to ensure the
best fit of the model. The highest likelihood was
achieved when k was set to 1.1 with a log likeli-
hood of −139.2695. The estimated coefficients are

Table 2. Parameter estimates for TH gene alleles for combined data

Allele �0 p �1 p p0

0.4920.403−9.6e−50.841−0.031THO6
−3.7e−30.004−0.535 0.181THO7 0.369

THO8 −1.345 0.000 4.0e−4 0.895 0.207
THO9 −0.208 0.241 −5.1e−3 0.057 0.448

0.2890.0067.2e−30.000THO10 −0.902
THO11 −2.852 0.000 −2.1e−3 0.727 0.055
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Fig. 1. The observed (dash-dotted) and the estimated (solid)
frequencies for (a) TH8 and (b) TH10 carriers. The estimated
genotype frequency for TH8 carriers does not show significant
increase. However, there is a substantially linearly increase in
the frequency for TH10 carriers.

of the model that must be taken into account when
applying it. First, the strategy of modeling geno-
type frequency as a function of age requires only
individual genotype and age at the time of partici-
pation, perhaps together with other covariates. The
model can be applied to data collected from cross-
sectional investigations. No follow-up is necessary.
Second, the logistic regression model in this appli-
cation is consequently merely an association test.
In this situation, the result can be affected by
intrapopulation heterogeneity in allele frequency
(16, 17). As was the case for the case–control
design, ethnic origin should be carefully controlled
in the sampling process in order to avoid spurious
conclusions.

A comparison of the differences among the ma-
jor models that are in use in gene longevity studies
is called for. Similar to the recently proposed rela-
tive risk model (7–11), the logistic regression
model makes full use of individual survival infor-
mation and thus achieves a higher level of effi-
ciency than the popular gene frequency method,
which relies on a simple case–control design. Like
the relative risk model, no specific age concentra-
tion in the sampling is necessary, although ex-
tremely long-lived individuals are essential in order
to achieve the goal of the study. Both the logistic
regression and the relative risk models can estimate
initial gene frequency. Instead of directly estimat-
ing a frequency parameter, however, the initial
frequency in the logistic approach is calculated
using [3] and setting age x to zero.

Instead of modeling frequency as a dependent
variable, one can approach the task the other way

Fig. 2. The observed (dash-dotted) and the estimated (solid)
frequencies for 3�ApoB-VNTR S/S genotype. Instead of a
monotonous pattern, the frequency for 3�ApoB-VNTR S/S
genotype increases at early ages but decreases after about age
45.

�0= −4.864 (SE=1.226, p=0.00), �1=0.549
(SE=0.272, p=0.043), and �2= −0.342 (SE=
0.166, p=0.040). All the coefficients are signifi-
cant, but the linear and non-linear parameters have
opposite signs (�1 positive and �2 negative). In Fig.
2, we plotted the observed and estimated frequen-
cies of the S/S genotype carriers by age. One can
see that the genotype frequency increases at early
ages, reaches a peak at middle age, and then begins
to decrease after about the age of 50. The observed
non-monotonous trajectory is well captured by the
fitted convex curve.

Discussion

The application of the logistic regression model
has shown that this model can be a very useful tool
for analyzing genetic data for the study of human
longevity. However, there are some special features
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around and model the age of participants as a
dependent variable by assigning a value of ‘1’ to
centenarians ‘0’ to the control group and setting
genotype and other covariates as independent vari-
ables. However, as was the case for the gene fre-
quency method based on case–control design, this
approach does not make full use of the survival
information since it divides individuals into two
groups although life span is a continuous trait.
Consequently, one cannot explore the frequency
trajectory of the genotype by age and the impor-
tant pattern as revealed in Fig. 2 could be missed.

Indeed, one striking advantage of the logistic
regression approach is the capacity to model the
non-monotonous pattern of the observed genotype
frequency as illustrated in the analysis of the
3�ApoB-VNTR S/S genotype. As is shown by [7],
the odds ratio estimated from the logistic approach
can be compared to a risk estimate from the rela-
tive risk model. The odds ratio can, however, also
be derived as a function of individual age [8],
depending on the model specification. The 3�ApoB-
VNTR S/S genotype in this application provides a
very good example of this. In accordance with [8],
the odds ratio for comparing age 45 with age 15
can be written as

OR45/15=
e�0+�1×45+�2×451.1

e�0+�1×15+�2×151.1=e�1×30+�2(451.1−151.1)

=3.373

Likewise, the odds ratio comparing age 100 with
age 45 is

OR100/45=
e�0+�1×100+�2×1001.1

e�0+�1×45+�2×451.1 =e�1×56+�2(1001.1−451.1)

=0.383

Obviously, there is more than a threefold increase
in the probability of observing carriers versus non-
carriers of the genotype from age 15 to 45. In
contrast, there was a 260% decrease in this proba-
bility from age 45 to 100. The numbers indicate
that the same genotype conveys beneficial effects at
early ages only to exhibit harmful affects after the
age of reproduction. The age-dependent odds ratio
is of sound biological significance. The important
evolutionary theory of aging based on antagonistic
pleiotrapy predicts age-dependent genetic influ-
ences on survival as a result of the weak selection
of late-acting deleterious genes due to the termina-
tion of reproduction. In our example, the central
role played by the 3�ApoB-VNTR gene in cell
cholesterol homeostasis (which is functional in
membrane synthesis as well as in steroid hormono-
genesis) may explain the age-related effect of the
3�ApoB-VNTR locus on survival.

One has to be aware that when the model is
applied to cross-sectional data, the effect of certain
genotype could be overestimated due to genotype
frequency change in the population as selection
goes on especially for an allele that is not fully
recessive. However, it is unlikely that a big change
in frequency could happen in a few generations.

The logistic regression model can easily be em-
ployed using standard statistical packages in popu-
lar use. The implementation requires no special
training in computer programming, which makes
the approach highly convenient. We believe that
such an approach should definitely replace the
conventional gene frequency method. It will help
researchers to work more efficiently in their data
analysis and thus promote progress in the genetic
study of human longevity.
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