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Abstract

This paper reviews the recent literature on genes and longevity. The influence of genes on
human life span has been confirmed in studies of life span correlation between related
individuals based on family and twin data. Results from major twin studies indicate that
approximately 25% of the variation in life span is genetically determined. Taking advantage
of recent developments in molecular biology, researchers are now searching for candidate
genes that might have an influence on life span. The data on unrelated individuals emerging
from an ever-increasing number of centenarian studies makes this possible. This paper
summarizes the rich literature dealing with the various aspects of the influence of genes on
individual survival. Common phenomena affecting the development of disease and longevity
are discussed. The major methodological difficulty one is confronted with when studying the
epidemiology of longevity involves the complexity of the phenomenon, which arises from the
polygenic nature of life span and historical mortality change. We discuss this issue and
suggest new methodological approaches. © 2001 Elsevier Science Ireland Ltd. All rights
reserved.

www.elsevier.com/locate/mechagedev

* Corresponding author. Tel.: +39-0984-492932; fax: +39-0984-492911.
E-mail address: g.debenedictis@unical.it (G. De Benedictis).

0047-6374/01/$ - see front matter © 2001 Elsevier Science Ireland Ltd. All rights reserved.

PII: S0047 -6374 (01 )00247 -0



G. De Benedictis et al. / Mechanisms of Ageing and De�elopment 122 (2001) 909–920910

Keywords: Human longevity; Gene; Disease; Life span correlation

1. Introduction

The determinants of longevity have drawn the attention of researchers from a
variety of disciplines, such as sociology, biology, psychology and medical science.
Life span is a multifactorial quantitative trait, which is affected by genetic and
environmental factors. It also contains a stochastic component resulting from the
interaction between the individual chances of surviving and unpredictable events
that occur throughout the life course (Luciani et al., 2001). Environmental changes
that reduce mortality, e.g. advances in medicine, have a profound impact on the life
span. Advances in the treatment of fatal diseases and improvements in nutrition
and living conditions (environmental hygiene, social welfare and healthcare sys-
tems) led to a drastic reduction in death rate at young ages before 1950 and at old
ages after 1950 in the developed world (Vaupel et al., 1998). As a result, mean life
spans have experienced a remarkable increase in developed countries. With more
and more people celebrating their 100th birthday, we need to come up with an
explanation for life-span heterogeneity. Why do some people reach advanced ages
while others do not? To answer this question we turn to individual factors such as
lifestyle, behaviour, socio-economic background and genetic make-up. Using twin
data, intensive studies carried out in recent decades (Carmelli, 1982; Harris, 1992;
Hayakawa et al., 1992; McGue et al., 1993; Yashin et al., 1999a) have established
that there is a genetic correlation between life spans. A well-known Danish twin
study (Herskind et al., 1996) estimated the heritabilty of life span to be 0.23 for
males and 0.20 for females. However, the molecular basis of the inherited compo-
nents in human longevity is far from clear.

Two major arguments have to be taken into account in studies on the genetics of
longevity. The first involves the definition of the phenotype. Longevity is, in fact,
the net outcome of cumulative mortality over all age-classes, and cumulative
mortality is historically controlled. For this reason, the introduction of a cut-off in
the definition of longevity is quite arbitrary (Wilmoth et al., 2000). Second, classical
approaches to the study of human genetics, which are aimed at detecting co-segre-
gation of genetic markers in pedigrees, are not easy to implement. In fact, this
requires the sampling of pedigrees that include two or more very old individuals,
possibly in more than one generation, which is a very rare occurrence. This
difficulty applies equally to parametric (lod score) and non-parametric (sib-pair)
methods of assessing linkage. Moreover, the secular trend in the changing of
environmental conditions renders a direct comparison between the age of death of
parents and that of their offspring virtually meaningless.

For the above reasons, gene-longevity association studies of unrelated individu-
als, which search for non-random associations between polymorphisms at candidate
loci and aging, have been the most popular type up to now, and the literature is
growing quickly. This paper aims to review briefly the current literature and then to
make some suggestions for possible avenues of future research on gene-longevity
association.
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2. A brief review of the literature

Table 1 summarises the genes whose polymorphisms have been analysed in more
than one gene-longevity association study (only the post-1980 literature is
considered).

The first conclusion one can draw from Table 1 is that, in most cases, different
studies have furnished contradictory results. This can be explained by considering
the problems which affect the reliability of case/control longevity studies (Caruso et
al., 2000). Firstly, the assumption underlying association studies is that all individ-
uals in a population are fundamentally related to each other, and the degree of their
relationship has not been diluted by mutation rates or recombination between the
marker and the functional variant. Therefore, studies carried out in genetically
heterogeneous populations may be severely biased. Furthermore, the linkage dise-
quilibrium between marker and functional variant may be different in different
populations, depending upon the genetic history of the population itself. Secondly,
longevity does not necessarily imply good health. In fact a careful examination of
centenarians revealed that a substantial proportion of them reach the extreme limits
of human life span although they exhibit important functional/cognitive disabilities
(Forette, 1999; Franceschi et al., 2000a). Thus, the different results shown in Table
1 may be the consequence of different criteria of recruitment on the basis of health
status. Thirdly, since drastic changes in the incidence and prevalence of a number
of diseases have occurred in the past century, mortality for genotypes may depend
on the birth year of the cohort, and the real controls to oldest-old people should
consist of subjects who were born in the same year as the cases and who died before
the age chosen as the longevity cut-off. The recently introduced genetic–demo-
graphic approach, which combines demographic information with data on genetic
markers, may overcome this last problem and permit an estimation of hazard rates
and survival functions for candidate genes and genotypes in unrelated individuals
(Yashin et al., 1998; Toupance et al., 1998; Yashin et al., 1999b; Tan et al., 2001).
In any case, the different results obtained in different studies strongly suggest that
the influence of single genes on the overall population mortality is rather slight, and
that this is probably affected by the genetic and environmental history of the
population (Caruso et al., 2000). Despite the above-mentioned problems, the data
in Table 1 seem to show a consistent association with longevity for some genes
(APOE, APOB, APOA-IV, mtDNA). In particular, the current literature suggests
that APOE is the locus that can most consistently and reliably affect longevity.
Indeed, APOE genotype/allele distributions vary between centenarians and young
people in a variety of populations, as recently reviewed in Gerdes et al. (2000). In
this regard, it has been proposed that the e4 allele is a frailty gene, i.e. the APOE
e4 carrier has an increased rate of mortality compared to the rest of the population.
Moreover, the lack of association for other markers located in P53 and PARP
genes also seems to be quite replicable (De Benedictis et al., 1998b; Muiras et al.,
1998b; Bonafè et al., 1999a,b; Cottet, 2000).
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Table 1
Genes whose polymorphisms have been analysed in association with longevity in more than one studya

Longevity associationGene DiseaseFunction
associated

ApoE AD, CVDLipoprotein metabolism Yes (Louhija et al., 1994; Kervinen et al., 1994; Schachter et al.,
1994; Zhang et al., 1998; Gerdes et al., 2000)
No (Bader et al., 1998)(apoprotein of HDL, VLDL)

Cholesterol homeostasis CAD Yes (Kervinen et al., 1994; De Benedictis et al., 1997, 1998a)ApoB
(sole apoprotein of LDL)

AD? Yes (Merched et al., 1998; Pepe et al., 1998)ApoA-IV Lipoprotein metabolism (apoprotein of
HDL, VLDL)
Angiotensin converting MI, CI, AD, EH Yes (Schachter et al., 1994; Faure-Delaneff et al., 1998)ACE
Enzyme No (Bladbjerg et al., 1999; Heijmans et al., 1999a)

CYP2D6, PD?Cytochrome P450 gene Yes (Bathum et al., 1998)
No (Agundez et al., 1997; Yamada et al., 1998; Muiras et al., 1998a)family cancerCYP2C19

susceptibility
Immune disordersHLA class I Yes (Proust, 1982; Takata et al., 1987; Dorak et al., 1994; Ma et al.,Immune response

and class II 1997; Akisaka et al., 1997; Ivanova et al, 1998a; Ricci et al., 1998)
No (Izaks et al., 1997)
No (Bonafè et al., 1999a,b)CancerTumor suppressor geneP53

susceptibility,
Apoptosis

Yes (Mari et al., 1996; Mannucci et al., 1997)Blood coagulation andFactors V, MI,
No (Bladbjerg et al., 1999; Heijmans et al., 1999a; Meiklejohn et al.,VII, PAI-1 thromboemboliafibrinolysis proteins
2000)

CADPlasma coagulation factor Yes (Mari et al., 1996)Fibrinogen
No (Mannucci et al., 1997; Bladbjerg et al., 1999)

Prothrombin Blood coagulation and MI Yes (Mari et al., 1996)
prothrombin protein No (Bladbjerg et al., 1999)

MTHFR CVD Cancer Yes (Faure-Delaneff et al., 1997; Matsushita et al., 1997; KluijtmansHomocysteine methylation
et al., 1999; Todesco et al., 1999)susceptibility?
No (Galinsky et al., 1997; Harmon et al., 1997; Brattstrom et al.,
1998; Bladbjerg et al., 1999; Rea et al., 2000)
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Table 1 (Continued)

DiseaseFunctionGene Longevity association
associated

Mitochondrial Yes (Tanaka et al., 1998; Ivanova et al., 1998b; De Benedictis et al.,OxidativeMitochondrial
Phosphorylation diseases,DNA 1999)

CAD?, diabetes?,
PD?, AD?

DNA repair, apoptosis No (De Benedictis et al., 1998b; Muiras et al., 1998b; Cottet, 2000)???PARP

a AD, Alzheimer’s disease; CVD, Cardiovascular disease; CAD, Coronary artery disease; MI, Myocardial infarction; CI, Cerebral infarction; EH, Essential
hypertension; PD, Parkinson disease.
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Table 2 summarises the genes whose polymorphisms have been analysed in
association with longevity in one study only.

Taking into account the contrasting findings within Table 1, both negative and
positive results require caution. It is worth noting however that, while all the genes
in Table 1 (except PARP) are known as potential risk factors in complex age-re-
lated diseases, three out of seven genes in Table 2 have been analysed only in regard
to their biological role, without considering possible disease associations. Particu-
larly intriguing are the roles played by TH and SOD2 genes, which were found to
be associated with longevity although they are not associated with any known
disease. TH encodes the rate-limiting enzyme for the synthesis of cathecolamines,
which are aminoacid-derived molecules that act both as hormones (adrenalin) and
neurotransmitters (dopamine and noradrenalin). The TH gene is therefore a master
gene in the immune–neuro-endocrine system. Similarly crucial is the function of
SOD2, which encodes the mitochondrial superoxide dismutase specifically responsi-
ble for reactive oxygen species (ROS) scavenging in mitochondria. It should be
noted, however, that the same SOD2 data set was analysed using two different
methodological approaches: the gene frequency method (De Benedictis et al.,
1998b) and the relative risk method (Tan et al., 2001). Only the second approach,
which is more sensitive, was able to reveal an allele-specific association with
longevity. This new approach is based on the idea of combining data on genetic
markers with demographic information. This allows for the evaluation and com-
parison not only of frequencies of selected alleles or genotypes but also of survival
functions and mortality rates for groups of individuals carrying selected candidate

Table 2
A brief review of genes whose polymorphisms have been analysed in association with longevity in one
study onlya

FunctionGene Disease Longevity association
associated

MI? Stroke No (Bladbjerg et al.,Fibrinolytic/thrombolyticTPA (Tissue plasminogen
1999)responseActivator)

EH, CVD,Renin–angiotensin systemAGT (Angiotensinogen) No (Bladbjerg et al.,
CAD, CHD 1999)
CVDBlood coagulation No (Bladbjerg et al.,GP2b3a

1999)
No (De Benedictis et al.,???TPO (Thyroid Peroxidase) Thyroid metabolism
1997)

??? Yes (De Benedictis etCatecholamineTH (Thyrosine
al., 1998b)

SynthesisHydroxilase)
ROS scavenging,SOD2 (Superoxide ??? Yes (Tan et al., 2001)

dismutase 2) apoptosis
DNA helicaseWRN (Werner) Werner No (Castro et al., 1999)

syndrome

a MI, Myocardial infarction; EH, Essential Hypertension; CVD, Cardio-vascular disease; CAD,
Coronary artery disease; CHD, Coronary heart disease.



G. De Benedictis et al. / Mechanisms of Ageing and De�elopment 122 (2001) 909–920 915

genes or genotypes (Yashin et al., 1998). Several modifications of this method have
been developed and applied to the analysis of data on genetic markers. They
include parametric, semiparametric, non-parametric, and relative risk methods
(Yashin et al., 1999b, 2000). In contrast to the Gene Frequency (GF) method,
which assumes monotonous changes in genetic frequencies with age, this method
can deal with non-monotone age-specific trajectories of the frequencies of a
genotype. Such trajectories arise when mortality rates for groups of individuals
carrying different genotypes intersect. The reasons for such an intersection and
examples illustrating this phenomenon are discussed in Yashin et al. (1999b).

3. Do genetic risk factors affect longevity?

How can the negative findings be explained for genes whose variants are
well-recognised risk factors in age-related diseases? Insights on this point could be
furnished by some recently published studies. Heijmans et al. (1999b, 2000)
confirmed that the homozygosity for the Val-allele of the MTHFR gene is associ-
ated with increased mortality for male carriers, with consistent results from both
cross-sectional and prospective studies. This can be largely explained by an in-
creased risk of death due to cancer. However, polymorphisms at the ACE and
PAI-1 loci, which are associated with an increased risk of cardiovascular disease,
failed to show any influence on mortality since individual genes make only a minor
contribution to the mortality of the general population (Bladbjerg et al., 1999;
Heijmans et al., 1999a). In this situation, cross-sectional studies should be capable
of revealing a gene/longevity association only for those genes whose variability
contributes significantly to general mortality. The data in Table 1 shows that this
contribution is controversial for some risk factors of specific age-related diseases.
Stronger effects should be observed if the gene itself played a major, age-sensitive
biological role. For example, the positive association found between APOB poly-
morphisms and longevity would not depend solely on the APOB/CAD association
(Table 1) but also on the role played by Apolipoprotein B in cholesterol homeosta-
sis, which in turn could exert pleiotropic effects in a number of pathophysiological
situations (Goldstein et al., 1989). Likewise, the positive association between
mitochondrial DNA (mtDNA) inherited variability and longevity would not refer
to specific mtDNA-associated diseases but to the master role (oxidative phosphory-
lation) played by the mitochondrial genome in cell metabolism. Time-related
stochastic events could deteriorate master functions, and different polymorphic
variants of the related genes could have different capabilities of coping with such
time-related stress factors. Therefore, a decrease or increase in specific gene variants
in the genetic pool of the oldest-old (as compared to those of younger individuals)
would mirror the capability of these variants to compensate time-related damages
in crucial cell pathways. In line with this hypothesis are the positive findings at the
TH and SOD2 loci, although these findings require further confirmation. In
contrast, the negative result obtained for the PARP gene is rather disappointing
(De Benedictis et al., 1998b; Muiras et al., 1998b). Indeed, PARP encodes a zinc
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finger nuclear enzyme which is strongly activated by DNA breaks and which
promotes DNA repair (Satoh et al., 1992). It is to be expected that such a function
is crucial in ageing since the time-related accumulation of somatic DNA damages
requires an efficient DNA repair activity. What is more, a correlation between
PARP gene expression and longevity in mammals is well established (Grube et al.,
1994). The negative association between PARP variability and human longevity is
not likely to depend on the lack of linkage disequilibrium between the markers used
in the analysis, since other putative functional variants along the PARP gene have
yielded similar negative results. In any case, these data reveal another difficulty in
gene/longevity association studies, which is the choice of the markers. The ideal
marker should have high Polymorphic Information Content (high PIC index) and
provide information on a large part of the surrounding DNA region. Haplotypes,
possibly including microsatellites and SNPs, seem to offer the best opportunity for
this.

As one of the polygenic features of life span, some studies have reported the
sex-dependent genetic influences on life span (Proust, 1982; Dorak et al., 1994;
Ivanova et al, 1998a; De Benedictis et al., 1998b; Heijmans et al., 1999b). The
gene–sex interaction suggests that the effect of a gene on a multifactorial trait
depends on the physiological background in which the gene is expressed. If the
age-related physiological scenario changes in males and females differently, the
effects of a certain gene on disease or survival could vary between the sexes, which
indicates that males and females may follow different trajectories toward extreme
longevity (Franceschi et al., 2000a). More sophisticated statistical models aimed at
detecting the gene–sex and gene–environment interactions are thus needed for
genetic studies on longevity (Yashin et al., 2000; Tan et al., 2001).

On the whole, the data in Table 1 shows that gene polymorphisms, which are risk
factors for severe diseases, either failed to reveal any association with longevity or
they yielded completely unexpected results, such as the high incidence in centenari-
ans of the D/D ACE genotype (Schachter et al., 1994; Faure-Delaneff et al., 1998)
or the 4G/4G PAI-1 genotype (Mannucci et al., 1997). These findings may become
more clear if they are viewed in the light of recent conceptualisations of human
ageing and longevity (Franceschi et al, 2000b). Experimental data from model
organisms (yeast, C. elegans, Drosophila) indicate that ageing and longevity are
related, in a complex way, to the ability to cope with a variety of stressors.
Vertebrates have developed a complex system, the immune–neuro-endocrine sys-
tem, which modulates their ability to maintain an efficient network of highly
integrated complex functions despite continuous, intrinsic and extrinsic distur-
bances, which consequences accumulate with time. From this perspective, many
features of mammalian ageing could be considered to be the consequence of the
long-term effects of chronic stress (Franceschi et al., 2000c). The capacity of the
organism to recover from stress-induced modifications decreases in the elderly
(Castellani et al., 1998). Furthermore, ageing exposes the organism to possible
deleterious effects of stress-response molecules such as cathecolamines, which are
highly toxic compounds probably responsible for the selective loss of dopaminergic
neurons (Yang et al., 1999). In a heterogeneous population, such as human
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population, the ability to maintain stress-response within a range compatible with
good health might be age-dependent resembling dependence of survival function on
age. Healthy centenarians (Franceschi et al., 2000a) may represent the extreme tail
of such curve, which is formed by the best adapted individuals, who are able to
remodel themselves continuously in the face of time-related challenges.

At any rate, studies both of model organisms and of healthy centenarians
indicate the importance of an equilibrated capacity to cope with stress for attaining
longevity. As a consequence, common genetic risk factors defined on the basis of
specific diseases are probably not the key to longevity. Their effect on the mortality
of the overall population is most likely to be negligible in comparison to the effect
of master genes located at the knots of the ageing network. In light of these
considerations, the next steps in human longevity research could be to search for
stress-response genes that have been conserved by evolution. In any case, multidis-
ciplinary approaches integrating demographic, genetic, biochemical, and clinical
methods are needed to disentangle the complex network that controls ageing and
longevity in higher organisms.
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