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Abstract

New approaches are needed to explore the different ways in which genes affect the human life span. One needs
to assess the genetic effects themselves, as well as gene–environment interactions and sex dependency. In this
paper, we present a new model that combines both genotypic and demographic information in the estimation of the
genetic influence on life spans. Based on Cox’s proportional hazard assumption, the model measures the risks for
each gene as well as for gene–environment and gene–sex interactions, while controlling for confounding factors.
A two-step MLE is introduced to obtain a non-parametric form of the baseline hazard function. The model is
applied to genotypic data from Italian centenarian studies to estimate relative risks of candidate genes, risks due
to interactions and initial frequencies of different genes in the population. Results from models that either do or
do not take into consideration individual heterogeneity are compared. It is shown that ignoring the existence of
heterogeneity can lead to a systematic underestimation of genetic effects and effects due to interactions.

Introduction

The genetics of inter-individual variability in the
human life span have been explored in correlation
studies in twins and families (McGue et al. 1993;
Bocquet-Appel et al. 1990; Herskind et al. 1996), and
in association studies of candidate genes in centen-
arians and younger people from the same population
(Schachter et al. 1994; De Benedictis et al. 1997,
1998a; Bathum et al. 1998; Ivanova et al. 1998;
Bonafè et al. 1999a, 1999b; Bladbjerg et al. 1999).
Moreover, methods that combine genetic information
with demographic covariants of the population from
which the genetic sample is taken have been proposed
(Yashin et al. 1998, 1999; Toupance et al. 1998).

However, new approaches are needed to take into
account heterogeneity elements (for example, gene–

environment interaction and sex-dependent effects),
which are probably crucial in aging and longevity but
which have previously been ignored due to method-
ological limitations (Yashin et al. 1999a). Based on
data from Italian centenarian studies, De Benedictis
et al. (1998b, 1999) reported that gene–environment
interaction and sex-specific effects play a role in indi-
vidual survival both at the THO locus and in the
mitochondrial genome. By applying survival analysis
to the same data source, Yashin et al. (2000) found a
strong gene–area interaction for the THO10 allele but
without incorporating a gene–sex interaction. Like-
wise, Ivanova et al. (1998) found that HLA-DR7
and HLA-DR11 display significant sex-specific effects
on longevity. Gene–environment interactions in the
case of complex traits are also reported in twin
studies (Martin 2000) and in genetic studies on cancer
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(Bennett et al. 1999; Chen et al. 1999), hyperten-
sion (Gavras et al. 1999), osteoporosis (Sambrook and
Nguyen 1999), and in animal experiments (Clare and
Luckinbill 1985; Arking 1987).

The case-control design and case-only study based
on the same principle as the case-control study
are popular in genetic epidemiology for assessing
gene–environment interaction (Andrieu and Goldstein
1999). However, when they are applied to the genetics
of longevity, the disadvantages are the same as those
addressed by Yashin et al. (1999). First, important
variables such as participants’ ages are not fully util-
ized since the aging process is continuous. Second,
the demographic background is crucial in assessing
the influence of genes on survival (Yashin et al. 1998,
1999). Third, as we show here, the practice of estim-
ating gene–environment interactions is also important
for evaluating the effect of genes properly. And it is
even more important and relevant in the area of public
health, since the discovery of gene–environment inter-
action and sex-specific effects can help to create a
more efficient preventive strategy and to improve
the cost-effectiveness of efforts to prolong individual
lives.

The relative computational convenience that has
resulted from rapidly developing new techniques
allows us to think about new approaches in which
more information can be combined in measuring the
effects of candidate genes and thus more aspects of
how genes function in the process of aging can be
understood. In this paper, we present a new approach
aimed at detecting gene–environment and gene–sex
interactions. The approach is based on the relative risk
method proposed by Yashin et al. (1999) and is applied
to empirical data from Italian centenarian studies.

Materials and methods

Samples

To study the association between genetic variation and
longevity, a multicentric longevity study was started
in Italy in 1995. Genetic information was collected
from individuals in two groups: centenarians and a
younger group of people aged 7 to 84. Individuals are
recorded by sex and region (southern or northern Italy,
respectively). The distribution of participants by sex
and area is shown in Table 1. The centenarian group
consists of people who had reached the age of 100
or older at the time when blood samples were taken.

Table 1. Observations by sex and area.

Group Male Female Total

Young

South 311 302 613

North 54 82 136

Total 365 384 749

Centenarian

South 36 67 103

North 26 83 109

Total 62 150 212

The oldest individual in this group was a 109-year-
old woman. All participants were clinically healthy.
The number of males and females in the control, (i.e.,
the younger) group is well balanced, but this is not
the case for the centenarian group, where there are
more than twice as many females as males. In the
control group, there are more people at younger ages
from the south. However, since one can control for
confounding factors like area and sex in our model,
this data structure is not problematic for the analysis.

Genotypic data

We examined the eleven autosomal genes and mito-
chondrial DNA markers shown in Table 2 (apoli-
poprotein B (APOB): De Benedictis et al. 1998a;
Renin (REN), tyrosine hydroxylase (THO), super-
oxide dismutase 2 (SOD2), poly(ADP-ribose) poly-
merase (PARP): De Benedictis et al. 1998b; mitochon-
drial DNA (MtDNA) haplogroups: De Benedictis et
al. 1999; superoxide dismutase 1 (SOD1), apolipo-
protein A-I (APOA1), apolipoprotein C-III (APOC3),
apolipoprotein A-IV (APOA4), insulin (INS), D-Loop
MtDNA: unpublished data). The valid number of
observations for each locus varies (Table 2) due to the
problem of missing values.

Demographic data

Male and female survival distributions are taken from
the Italian life table for 1994 (Annuario Statistico
Italiano 1997).

Statistical method

Cox’s proportional hazard model (Cox 1972) is
a widely used tool for doing survival analysis in
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Table 2. Genes and markers analyzed.

LOCUS Biological role Chromosome Marker Alleles Number of
individualsa

APOB Major protein of LDL 2p24-23 3′APOB-VNTR 23, 26, 31, 33,
34, 35, 36, 37,
39, 41, 43, 45,
47, 49, 51, 53,
55

787

REN Angiotensin II synthesis 1q32 HUMREN4 (STR) 7, 8, 10, 11, 12 375

THO Catecholamine synthesis 11p.15 HUMTHO1 (STR) 6, 7, 8, 9,
10−1, 10

555

SOD1 Oxygen free radicals scavenging 21q22.1 D21S223 (STR) 1, 2, 3, 4, 5, 6,
7, 8, 10

386

SOD2 Oxygen free radicals scavenging 6q25 (T/C) 401nt T, C 354

APOA1 Major protein of HDL. Activator of
LCAT

11q13-qter RFLP-MspI (–78nt) +, – 328

APOC3 Chylomicrons and VLDL 11q13 RFLP-SstI (3′ter) +, – 328

APOA4 Newly secreted chylomicrons 11q13 RFLP-HincII (ex3) +, – 328

INS Codes insulin 11p.15 RFLP-FokI (1428nt) +, – 438

PARP DNA repair 1q41-42 STR (ex1) 83, 85, 87, 89,
93, 95, 97, 99

315

Haplo-group Oxidative phosphorylation mtDNA Associated RFLPs H, I, J, K, T,
U, V, W, X,
Others

547

D-Loop Oxidative phosphorylation mtDNA STR 132, 134, 136,
138, 140

393

a For whom information on both gene typization and age at participation was available.

epidemiology. But it cannot be applied when one is
interested in measuring the effect of a certain gene
allele or genotype on data from cross-sectional studies
because participants are censored as regards their life
spans. However, the idea of proportional hazard can
be borrowed to construct new models for estimating
the relative risks of the gene alleles or genotypes of
interest. We define the hazard of death as the instant-
aneous probability of dying given that an individual
has survived to a particular time. We then define the
relative risk of a gene allele r as the ratio of hazard
of death for carriers of the gene allele, µ(x, r), to
the hazard of death for the non-carriers, which is the
baseline hazard µo(x). The proportional hazard model
assumes that the relative risk r is constant over time
on the baseline hazard so that µ(x, r) = rµ0(x). The
corresponding survival function is

s(x, r) = e− ∫ x
0 µ(t,r)dt = e− ∫ x

0 rµ0(t)dt (1)

= e−r
∫ x

0 µ0(t)dt = e−rH0(x)

= s0(x)r

Although r can take any value greater than zero,
a gene allele with r larger than one (frailty allele)

increases the hazard of death, while a gene allele
with r smaller than one (longevity allele) reduces
it. One good example of frailty allele is the ApoE4.
Studies have confirmed that it is a frailty allele such
that carriers of the allele have lower survival than the
non-carriers (Schachter et al. 1994; Zhang et al. 1998).

When considering unobserved individual hetero-
geneity, or so-called frailty, a frailty model (Vaupel
et al. 1979; Vaupel and Yashin 1985; Aalen 1988;
Hougaard 1991) should be introduced. If an individual
with a gene allele has frailty z, based on the propor-
tional hazard assumption, the hazard of death at age
x is µ(x, r, z) = xrµ0(x). The mean hazard of death
for a heterogeneous population carrying the gene
allele is

−
µ(x, r) =

∫ ∞

0
µ(x, r, z)fx(z)dz (2)

=
∫ ∞

0
zµ(x, r)fx(z)dz

= µ(x, r)

∫ ∞

0
zfx(z)dz

= µ(x, r)−z (x)
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Table 3. Proportions and risks for different sub-groups.

South North

+ – + –

Proportion PsPgs Ps (1 – Pgs ) (1 – Ps ) Pgn (1 – Ps ) (1 – Pgn)

Risk, males rrarearg×arg×s rarea rrg×s 1

Risk, females rrarearg×a rarea r 1

Although several distribution forms can be assumed
for frailty z, a gamma-distribution with mean one
and variance σ 2 is traditionally preferred (Vaupel et
al. 1979; Aalen 1988; Hougaard 1991). Given the
gamma-distribution of z,−z (x) in (2) can be derived as
−
z (x) = [1 + σ 2rH0(x)]−1 (Vaupel et al. 1979) so that
(2) becomes

−
µ(x, r) = µ(x, r)/[1 + σ 2H(x, r)]

= rµ0(x)/[1 + σ 2rH0(x)]
and its corresponding survival function is

−
s (x, r) = [1 + σ 2rH0(x)]−1/σ 2

(3)

= [1 − σ 2r1n(s0(x))]−1/σ 2

Here H0(x) is the cumulative baseline hazard at age
x. Frailty models can help to explain the leveling-off
of the death rate at advanced ages as a consequence
of selection (Vaupel and Yashin 1985; Aalen 1988).
As we can see, the mean frailty −

z (x) decreases with
increasing age as selection takes place in a heterogen-
eous population. It will be shown later that the risks of
observed gene alleles could be underestimated in this
situation if one ignores the existence of unobserved
heterogeneity.

Since all individuals can be grouped as carriers
and non-carriers of a gene allele or genotype, one
can introduce the simple two-point distribution for the
allele or genotype (Vaupel and Yashin 1985; Hougaard
1991). Then the average survival at age for the mixed
population consisting of both carriers and non-carriers
is (Vaupel and Yashin 1985)

=
s (x) = p−

s (x, r) + (1 − p)−s (x) (4)

In (4), p is the proportion of carriers at birth, and −
x (x)

is the average survival of non-carriers. From (4) we
see that =

x (x) is the weighted mean survival of carriers
and non-carriers. (4) can be extended to include more
than two sub-groups on the right-hand side with risk

compositions of the observed genetic and non-genetic
covariates so that

=
s (x) =

k∑
i=1

Pis
−(x, ri ) (5)

In (5), k is the total number of compositions with∑k
i=1 Pi = 1, and ri is the risk for sub-group i.

The proportion of sub-group i at age x is

pi(x) = pis
−(x, ri)/

=
s (x) (6)

Based on multinomial distribution (Hastings and
Peacock 1975), the likelihood function can be written
as

L ∝
∞∏

x=x0

k∏
i=1

pi(x)ni (x) (7)

where x0 is age of the youngest participant in the
study, and ni(x) is the number of individuals at age x

in sub-group i.
∑k

i=1 ni(x) = N(x), the total number
of observations at age x.

Extending (4) to include multiple groups enables
us to incorporate confounding factors as well as inter-
actions into the model. Our data includes an indi-
vidual’s sex and region, in addition to the genetic
covariates. The proportions and total risks of different
sub-groups are shown in Table 3. The proportion of
individuals from the south is Ps and from the north is
(1 – P2). The proportion of carriers in the south is Pgs

but that in the north is Pgn. r is the risk of carrying
the gene allele or genotype, which is defined as the
relative risk for carriers in reference to non-carriers.
rarea is the risk of the confounding factor area, which
is defined as the relative risk of being from the south
in reference to that of being from the north. rg×a is
the risk of gene–area interaction, which is defined as
the relative risk for carriers from the south in refer-
ence to carriers from the north. rg×s is the risk of
gene–sex interaction, which is defined as the relative
risk for male carriers in reference to female carriers.
To detect gene–sex interaction, risk compositions are
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specified for males and females separately but with
shared parameters (Table 3). There are two things to
be considered in such an arrangement. First, male and
female survivals are different (Hazzard 1986; Holden
1987; Keyfitz and Flieger 1990): death rates for males
are usually higher than for females. Second, there
could be mortality crossover at late ages (Kannisto
1994), which would indicate that the relative risk of
sex itself is not proportional. In the estimation process,
separate likelihood functions are constructed for males
and for females, respectively, but with shared para-
meters.

The estimation is carried out by maximizing the
product of all the likelihood functions based on each
gene allele with the same risk for area rarea and the
same variance parameter for the unobserved hetero-
geneity σ 2. The one rarea for all genes is necessary
because it enables the model to capture the risks of
gene–area interaction for different genes. The same σ 2

for all sub-populations is used in order to reduce the
number of parameters to be estimated and to increase
the efficiency of the estimation. Although variances in
unobserved heterogeneity may not be the same among
the sub-populations, they cannot differ dramatically
since we only observe a small part of the total frailty.

In our estimation strategy we apply a two-step
MLE by which male and female baseline survival
functions are estimated from (5) for the given para-
meters (frequencies and risks) in step one. The
calculated baseline survivals are then introduced into
the likelihood function to estimate the parameters
by maximization in step two. This process reiter-
ates until the maximum likelihood function converges
(Figure 1). The major advantage of the two-step MLE
is that baseline hazard functions for males and females
obtained in this way are non-parametric.

All calculations in this paper were performed with
the program GAUSS (Aptech Systems 1996), and
graphic presentations were constructed using AXUM
software (MathSoft 1996).

Results

The model was first applied to each single allele at
different loci to find candidate alleles that may have
potential influence on individual survival. Irrelevant
genes were selected out by testing their statistical
significance for their relative risks (risk of the gene
allele, risks of the gene–area, and gene–sex interac-
tions). Since this is done for each gene allele separ-

Figure 1. The two-step MLE used for estimating genetic para-
meters and the baseline survival function. The procedure begins
with starting points for the parameters and ends with estimated para-
meters and baseline survival function when maximum likelihood
converges.

ately, the estimate of the risk of area is different for
different alleles due to missing values. Twelve alleles
at 5 loci (APOB, THO, SOD2, INS, mtDNA, both
haplogroups and D-loop markers) were selected from
the data as showing potential influence on the life
span. We then put them together into one estimation,
with the restriction that they had the same risk of
area. Significant levels for risk parameters (relative
risks for the genes and for interactions) were deter-
mined by testing the statistical differences between
the estimated risks and one, with the null hypothesis
H0: r = 1. The probability of a type I error is α =
0.05. The results are shown in Table 4. There are 3
gene alleles (APOB39, THO10, mtDNAhapl-J) with
a potential influence on survival, with risks smaller
than one, and there are two frailty alleles (THO7 and
mtDNAhapl-U), with risks larger than one. There are
3 genes that have significant gene–environment inter-
actions (APOB35, APOB39, SOD2-T). For carriers of
APOB35 and 39, southerners have higher risks than
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Table 4. Parameter estimates without heterogeneity.a

Genes Gene frequency Gene frequency Risk of gene Risk of g×a Risk of g×s

in south Italy in north Italy

est. sd est. sd est. sd P−value est. sd P−value est. sd P−value

Apob35 0.402 0.017 0.356 0.017 0.902 0.056 0.079 1.143 0.072 0.046 0.991 0.061 0.883

Apob39 0.084 0.010 0.072 0.009 0.754 0.092 0.008 1.408 0.198 0.039 1.164 0.144 0.255

THO7 0.321 0.020 0.362 0.020 1.117 0.065 0.070 0.936 0.060 0.293 0.906 0.057 0.101

THO8 0.240 0.018 0.142 0.015 0.980 0.087 0.813 1.044 0.095 0.645 0.881 0.064 0.062

THO10 0.330 0.020 0.396 0.021 0.864 0.052 0.009 1.105 0.071 0.135 1.110 0.071 0.122

SOD2-T 0.829 0.020 0.800 0.021 0.986 0.068 0.837 0.898 0.044 0.021 1.033 0.091 0.715

INS– 0.985 0.006 0.965 0.009 1.210 0.155 0.175 0.932 0.041 0.098 0.774 0.166 0.175

INS+ 0.258 0.021 0.346 0.023 0.899 0.061 0.095 1.063 0.080 0.429 1.128 0.080 0.107

mtDNAhapl-J 0.045 0.009 0.051 0.009 0.761 0.112 0.033 1.233 0.207 0.261 0.981 0.110 0.867

mtDNAhapl-U 0.138 0.015 0.224 0.018 1.162 0.084 0.053 0.850 0.077 0.053 1.051 0.088 0.563

mtDNAstr-136 0.014 0.006 0.060 0.012 0.933 0.125 0.590 0.637 0.188 0.053 1.059 0.150 0.692

mtDNAstr-138 0.034 0.009 0.014 0.006 0.618 0.201 0.057 1.513 0.521 0.324 1.075 0.184 0.683

a rarea = 1.162 (sd = 0.014, P−value ≈ 0.000).

northerners (Table 4). But for carriers of SOD2-T,
southerners have lower risk than northerners. There
is no allele with sex-specific influences although the
P−value of rg×s for THO8 allele is 0.062. The overall
risk of rarea is 1.162 (sd = 0.014, ≈ 0.000), which
means that southerners have a higher risk of death than
northerners.

In another estimation, we took into account
unobserved individual heterogeneity. By introducing
different variances of hidden frailty σ 2, we arrived at
different values of the likelihood function. The highest
likelihood was reached when σ 2 is around 0.575
(Figure 2) and when the best fit to the data is obtained
(Table 5). Among the major changes, the P−value for
the INS+ allele decreased from 0.095 to 0.049, for
APOB35 from 0.079 to 0.047, and for mtDNAstr-138
from 0.057 to 0.001. The effect of gene–area inter-
action for APOB39 becomes less significant although
the risk is higher than in Table 4. Meanwhile, the risks
of gene–environment interaction for mtDNAhapl-U
and mtDNAstr-136 become significant with P−value

0.017 and P−value 0.005 respectively. In the hetero-
geneity model, THO8 allele shows a strong sex
dependent influence on survival which reduces the
hazard of death for males but not for females (P−value

= 0.013). The estimates of relative risks in Table 5 are
all higher when individual heterogeneity is considered.
This indicates that if one does not consider hetero-
geneity, the effect associated with a given gene allele
can be systematically underestimated. In Figure 3
we present the hazard functions for female north-

erners with and without the APOB39 allele. The risk
of death is substantially reduced when APOB39 is
present.

As concerns allele–area interaction, SOD2-T and
mtDNAstr-136 have beneficial effects for south-
erners although they are neutral genes for north-
erners. In Figure 4 we plot the mortality curves for
mtDNAstr-136 carriers in the south and the north
for the two sexes. The risk of death is dramati-
cally lower for southerners than for northerners as
a result of gene–environment interaction. In the
model that considers unobserved heterogeneity, the
estimated rarea increases from 1.162 in the model
without heterogeneity to 1.611 (sd = 0.066, P−value

0.000).
THO8 is the only gene that shows a sex-specific

influence. The gene is neutral in females but it reduces
the risk of death by almost half (to 0.644) for males.
The mortality curves for southerners are plotted in
Figure 5 for both males and females. But only males
exhibit a difference between carriers and non-carriers
of this allele. The sex-dependent influence of THO8
indicates that the effect of a gene on multifactorial trait
depends on the physiological background in which
the gene is expressed. Therefore, if the age-related
physiological scenario changes in males and females
differently, the effect of a certain gene on survival
could vary between the sexes. In Figure 5, the female
mortality curves overtake those of males at later ages.
The necessity of introducing male and female survival
functions in the model is obvious.
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Figure 2. The log likelihood plotted against σ 2. The highest likelihood is reached at the point σ 2 = 0.575.

Figure 3. Estimated hazard functions for female northerners with (+) and without (–) Apob39 gene in log scale. The gene significantly reduces
risk of death over all ages.
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Table 5. Parameter estimates with heterogeneity.a

Genes Gene frequency Gene frequency Risk of gene Risk of g×a Risk of g×s

in south Italy in north Italy

est. sd est. sd est. sd P−value est. sd P−value est. sd P−value

Apob35 0.404 0.017 0.354 0.017 0.740 0.131 0.047 1.487 0.269 0.070 1.012 0.306 0.968

Apob39 0.088 0.010 0.069 0.009 0.444 0.132 0.000 2.936 1.201 0.107 1.842 0.747 0.260

THO7 0.322 0.020 0.364 0.020 1.366 0.242 0.130 0.831 0.171 0.323 0.781 0.162 0.177

THO8 0.238 0.018 0.143 0.015 0.972 0.241 0.908 1.091 0.294 0.758 0.644 0.143 0.013

THO10 0.328 0.020 0.391 0.021 0.656 0.106 0.001 1.308 0.246 0.211 1.347 0.266 0.192

SOD2-T 0.830 0.020 0.79 0.021 0.939 0.192 0.752 0.734 0.113 0.019 1.125 0.313 0.689

INS– 0.986 0.006 0.966 0.009 1.675 0.638 0.290 0.815 0.107 0.083 0.589 0.382 0.283

INS+ 0.260 0.021 0.344 0.023 0.737 0.134 0.049 1.202 0.275 0.462 1.450 0.325 0.167

mtDNAhapl-J 0.045 0.009 0.050 0.009 0.497 0.172 0.003 1.666 0.759 0.380 0.867 0.258 0.606

mtDNAhapl-U 0.136 0.015 0.228 0.018 1.587 0.375 0.118 0.584 0.175 0.017 1.212 0.343 0.536

mtDNAstr-136 0.016 0.006 0.057 0.012 0.826 0.310 0.573 0.352 0.231 0.005 0.982 0.355 0.959

mtDNAstr-138 0.035 0.009 0.012 0.006 0.275 0.212 0.001 3.154 2.791 0.440 1.158 0.532 0.766

a rarea = 1.611 (sd = 0.066, P−value ≈ 0.000).

Figure 4. Estimated hazard functions for mtDNAtsr-136 male and female carriers by area. Southerners have a lower risk of death than
northerners for both sexes.
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Figure 5. Estimated hazards for southerners with (+) and without (–) THO8 for the two sexes. While the death rate does not differ between
female carriers and non-carriers, males with the gene have a lower risk of death than that of those without it.

While some genes may manifest gene–environ-
ment interaction, there are others that exhibit different
initial frequencies in different geographic regions.
Frequencies for THO8 and mtDNAstr-138 are signifi-
cantly higher in southern than in northern Italy, while
the frequencies of INS+, mtDNAhapl-U, mtDNAstr-
136 are higher in the north (Table 5). Differences
in gene frequencies by area are not unexpected, and
they may be due to the differing genetic origins of
the southern and northern Italian populations (Cavalli
Sforza et al. 1994). In Tables 4 and 5, the reported
frequencies are the proportions of carriers of the genes.
The corresponding allele frequencies can be calculated
since the estimated proportions include individuals
carrying one or two gene alleles. Let us assume that is
the allele frequency. The proportion of carriers of the
allele in the population is P

′2 + 2P ′ (1 – P ′) = 1 – (1 –
P ′)2, which equals the estimated proportion P in the
model. With this relationship, we can calculate allele
frequency as P ′ = 1 –

√
1 − P . Taking APOB35, for

example, the allele frequency is P ′ = 1 –
√

1 − 0.404
= 0.228 in the south. Comparing the frequency esti-
mates in Tables 4 and 5, we see that the introduction
of heterogeneity does not seem to affect the estimation
significantly.

Conclusions

The present study demonstrates the feasibility of
analyzing genotype data in combination with demo-
graphic information to estimate the relative risks
associated with both a gene by itself and a gene–
environment interaction, as well as to estimate sex-
specific effects on survival. The estimation of gene–
environment interaction is crucial for the following
reasons. First, as the results show, gene–environment
interaction exists as a common phenomenon in modu-
lating a complex trait such as life span, where the
environment has an important role to play. Thus, the
study of gene–environment interaction is an important
aspect of genetic research on longevity. Second,
ignoring these interactions can result in an incorrect
assessment of allele effects. If a gene is beneficial
in the south but neutral in the north, for example, it
could be assessed as a universally beneficial gene if its
interaction with geographic area is ignored (simulated
result). In this paper, the strategy for detecting gene–
environment interaction is also applied to the investig-
ation of the sex dependency of the influence of genes
on life span. When investigating sex interaction, it is
important to take into account the existing mortality
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difference between the two sexes, which results in a
very high proportion of females among the oldest-old
(Vaupel et al. 1998). The two distinctive features, the
inclusion of gene–sex interaction and the introduction
of sex-specific survival, provide a feasible and effi-
cient way of measuring the sex dependency in gene
expression and regulation.

In addition to gene–environment interaction, the
environment itself plays a major role in survival
(Christensen and Vaupel 1996; Herskind et al. 1996;
McGue et al. 1993; Harris et al. 1992) and can thus
act as a confounding factor that influences the eval-
uation of genetic effects (Sellers et al. 1998). Only
when the interference of the environment is properly
controlled for can the genetic and interactive terms
be measured correctly. Sex is another confounding
factor that matters. In this application, it is success-
fully avoided when male and female survival functions
available from population life tables are introduced
and the interaction of sex incorporated. The sex-
specific effect is measured as an extra risk for carriers
of the gene of one sex when other parameters are
controlled for. With this strategy, it is possible to
include other confounding factors when necessary,
and it is possible to extend this model to explore gene–
gene interaction as well. The life span as a complex
trait is a polygenic phenotype that involves the co-
effect of multiple genes (Vaupel and Tan 1997; Martin
1997). It will be interesting and necessary to discover
whether the genes function together, independently,
and/or dependently. If there is any dependency, then
the biological significance can be ascertained. Given
the fact that there is usually a considerable amount
of polymorphism at each locus, a better strategy is to
combine the simple gene frequency method with our
new approach. In this way, possible interactions can
be screened by simply comparing frequencies among
different age groups and then examining them care-
fully and in more detail afterwards by applying the
new methods.

Since some of the genes have different frequencies
in different geographic areas (THO8, INS+,
mtDNAhapl-U, mtDNAstr-136, mtDNAstr-138),
ignoring the regional differences might introduce bias
into the estimates of the risks associated with them.
In a simple simulation, we assume that one gene is
neutral, with risk r = 1, but that there are different
gene frequencies in the south (0.1) and in the north
(0.2). We also assume that the area risk for being from
the south is 1.5. The estimated risk r for the gene is
0.95 when we impose the same gene frequency for

the two areas. This bias stems from an overestimated
gene frequency in the south and an underestimated
frequency in the north (0.15 for both areas if one
assumes that 50% are from the south at birth). Due
to the higher risk of death in the south (1.5 to 1),
there are more people from the north who reach old
age. This high proportion of northerners at old ages is
artificially related to a lower risk of the gene occurring
when the frequency of the gene is underestimated in
the north.

Another important aspect of this application is
the introduction of unobserved individual heterogen-
eity. Its influence on the estimates of risks is explic-
itly demonstrated in Tables 4 and 5. The risks are
systematically underestimated and thus lead to conser-
vative conclusions when heterogeneity is not taken
into consideration. When heterogeneity is introduced,
however, this dramatically improves the likelihood
of the estimation and thus produces better estimates
(Figure 2). The likelihood values from heterogen-
eity and from homogeneity models are comparable
because σ 2 in the heterogeneity model is set to
different values, whereupon the parameters are then
estimated. The number of parameters estimated does
not change at all, regardless of whether or not one
considers heterogeneity. However, it is not true that all
sub-populations had the same variance in their unob-
served frailties. The one-σ 2 model offers a feasible
way of including heterogeneity with a limited sample
size. As a consequence, hazard functions for different
sub-populations merely converge and do not cross –
which may not necessarily be the case. On the other
hand, the convergence phenomenon (Figures 3, 4, 5)
raises an important question regarding the influence
of genes on survival at very old ages. It seems that a
certain gene becomes unimportant as the hazards of
death for populations with and without it converge.
As we know, the risk associated with the gene, as
it is assumed, does not change with age at the indi-
vidual level since we are using a proportional hazard
model as described by Cox (1972). The convergence
is almost certainly due to unobserved heterogeneity,
which compensates for the genetic effect as selec-
tion continues with increasing age in a heterogen-
eous population with the same genotype (Vaupel and
Yashin 1985). We hope that this problem can be
addressed in more detail when more data are avail-
able. In addition, the assumption of gamma-distributed
frailty is only an arbitrary condition for identifiability
and mathematical convenience. One could assume that
our model could be sensitive to the assumptions of the
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distribution of frailty. However, it was shown recently
(Yashin et al. 1999b) in a comparative analysis of
different frailty models that the gamma-frailty model
is rather flexible for working with survival data.

Furthermore, one must note that all risk parameters
in the model are defined as being multiplicatively
proportional to the baseline hazard, as is the case in
the Cox model. Like any other assumptions involved
in defining a model, the proportional hazard approach
may not reflect the real situation, especially for the
genetic parameters. As a result, some special patterns
of genetic influence on survival that deviate from
being constant could be missed. However, the simple
assumption can serve as the first step in solving the
problem.

One concern is that adjustments of the significance
level for the statistical tests might be needed since
we are doing multiple comparisons. However, our
interest here is focused on each gene allele separately,
so we test multiple hypotheses rather than performing
multiple tests of a single hypothesis. As is often
done, such adjustment is called for (De Benedictis
et al. 1999; Weir 1996; Rothman 1990) in the latter
situation. If one is interested in making an overall
conclusion on a single locus with multi-alleles, then
each test on one allele can be treated as one instance
of a repeated test that contributes to the final result on
the hypothesis on the locus. Adjustment is required in
this case because the existence of any significant allele
will result in a positive conclusion.

The fact that significant genes were discovered in
the present study is not surprising since the candidate
genes selected play central roles in crucial metabolic
pathways. The APOB gene variations could affect the
efficiency in cholesterol metabolism and thus asso-
ciate with individual’s susceptibility to coronary artery
disease (Hegele et al. 1986; Myant et al. 1989; Paul-
weber et al. 1989, 1990; Kervinen et al. 1994) and
survival. The significant effects of THO and INS
alleles could be relevant to the complex relationship
existing between insulin and catecholamins (Natali et
al. 1998) in glucose metabolism, whose regulation in
turn affects life span from yeast (Jiang et al. 2000) to
humans (Paolisso et al. 1996). The beneficial effect of
SOD2-T allele could support the finding that SOD2
polymophisms affect the efficiency of mitochondrial
transport (Shimoda-Matsubayashi et al. 1996). Lastly,
the biological background for the association between
mtDNA variation and longevity is probably relevant to
mtDNA haplogroup-specific oxidative phosphoryla-
tion efficiency (Ruiz-Pesini et al. 2000).

The application of this model on data collected
from genetic studies on aging and longevity should
help to detect additional relevant genes that contribute
to the process of aging both by prolonging or short-
ening an individual’s life span.
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