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Kindred Lifetimes: Frailty Models
in Population Genetics

JAMES W, VAUPEL

How in a heterogeneous population do individual life-history traits that are
theoretically important but largely unobservable, affect observed population dy-
namics? How can inferences be drawn about the underlying traits from the pop-
ulation patterns? As illustrated by Trussell and Rodriguez, Hoem, and Weiss
(Chapters 8, 9 and 12), this pair of questions is of convergent interest to both
geneticists and demographers; this chapter presents a new method for addressing
some aspects of it.

Consider, for example, a life-history trait—lifetime—that is of fundamental in-
terest to both geneticists and demographers. In studies of the duration of life, the
data typically consist of a distribution of individual lifetimes and a correspond-
ing age-specific survival curve. Geneticists ask: to what extent is the variation
in lifetimes due to genmetic versus environmental variation among individuals?
Demographers ask: what is the shape of the survival curve for individuals and
how does this trajectory differ across individuats? If individuals are classified by
genotype (and if the effects of common environment are unimportant), then the
demographers’ question is the same as the geneticists’, because variation across
individuals is then genotypic variation and the variation in lifetimes implied by
differing survival curves is the residual environmental variation. . o :

Even with recent advances in mapping genes, genotypes are still largely unob-
served and many of the details of environmental variation are also unobserved. -
Some environmental covariates, such as year of birth, caloric intake, and tem-
perature may be measured in some empirical studies, but it is not practicable
to measure all environmental and behavioral perturbations. Thus, as suggested
by Trussell and Rodriguez in this volume, a metaphor for the geneticists’ and
demographers’ question is the decomposition of a known quantity C into the -
sum of two unknown quantitics A and B. Unless some further mformauon is
added, the equation C' = 4 + B has infinitely many solutions.

The tack taken by geneticists is to combine (1} theories of how genes are
transmitted and (2) theories and assumptions about how genes interact with
other genes and with environmental factors with (3) empirical data on related
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156 CONVERGENT ISSUES IN GENETICS AND DEMOGRAPHY

individuals, such as twins, siblings, or parents and children. The observed pop-
ulation variation then can be uniquely decomposed into the two componenis of
genetic and environmental variation, This classic and widely used method unfor-
tunately has numerous limitations (e.g., Feldman and Lewontin, 1975; Falconer,
1681),

Demographers, in conatrast, proceed by specifying functional forms for their
A (the shape of survival curves for individuals) and B (the variation in survival
curves across individuals) and for the relationship between A and B. This
approach can also be severely criticized, especially when there s litile ancillary
evidence concerning the true nature of these functional forms [as discussed by
Trussell and Rodriguez (Chapter 8) and by Hoem (Chapter 9) in this volume).
Following the geneticists® lcad, this chapter develops a method that is grounded
in genetic theory and that exploits data on related individuals.

Following the demographers’ lead, the method is based on modemn ideas of
survival analysis and frailty modeling (rather than on the decomposition of vari-
ance). The hybrid method has some limitations and some advantages compared
with existing methods. In some life-history applications, it may provide geneti-
cists and demographers with a useful, convergent supplement to their current,
disparate approaches,

For expository simplicity, the chapter focuses the analysis of lifetimes. As
discussed in two companion articles (Vaupel, 1990; Larsen and Vaupel, 1989),
the method developed for analyzing mortality is directly applicable to a variety
of other life-history characteristics, including fertility, migration, marriage, and
morbidity, and 1o data sets on repeated events as well as related individuals:
instead of ages at death for relatives, the data might consist of times to successive
conceptions, The illustrative examples used in the chapter pertain t0 human
twins and to adopted children and their biological and adoptive parents, but
applications to other sets of relatives and to other species can be developed.
To facilitate extensions to various life-history traits, kin groupings, and species,
mathematical results are presented in quite general terms. The mathematics,
however, is not difficult and the only results presented are those of direct interest
to geneticists and demographers who are analyzing survival or duration data,

A FRAILTY MODEL FOR GENOTYPES

Consider first a population of individuals who are classified into groups with
identical genotypes. The data may pertain, for example, to monozygotic twins
or 10 a set of inbred lines and the offspring derived from crosses between them
(F1 crosses). Suppose these data are of the kind typically studied in the branch
of statistics known as survival analysis (Kalbfleisch and Prentice, 1980; Cox
and Oakes, 1984), In particular, suppose the data include the lifetime X;; of
individual { in genetic group j, an indicator b;; equal to 1 if X;; is a death time
and 0 if X;; is the oldest age when the individual was known to be alive prior to
being censored (i.e., lost to further observation) in an uninformative way, and,
perhaps, a vector of covariates vi; that may vary with age or time.

Frailty models for analyzing survival data focus on estimating the age tra-
Jectory of the force of mortality (i.¢., hazard of death). The force of mortality
p(z) at age =z is related to the survival curve s(z), which gives the probability
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of surviving to age z, by

—~ds(z)/dz '
= ——ei— 10-1
#(z) s(z) ( 0- )
and
s(e) = e HE=Y (10-2)
where the cumulative hazard H () is given by
&
H(z) = f af2)dt . (10-3)
0
The probability density function of age at death (i.e., lifetime) is given by
J(z) = p(z)s(z) . (104)

In frailty models it is assumed that the force of mortality for an individual can
be separated into two multiplicative components called frailty and the baseline
force of mortality (Vaupel, Manton, and Stallard, 1979). This may not be
entirely true in particular applications, but no model is a perfect representation
of reality. The operative question is whether the model is useful: is it simple
enough to be tractable and understandable but sophisticated enough to shed
some new light on reality? The simplicity of the multiplicative frailty approach
is analogous to the simplicity of linear regression; in a variety of theoretical and
empirical applications, frailty models have provided useful insights (e.g., Vaupel,
Manton, and Stallard, 1979; Manton, Stallard, and Vaupel, 1981 and 1986;
Heckman and Singer, 1984; Vaupel and Yashin, 1985a,b; Hougaard, 1986a;
Aalen, 1987, 1988).

For data classified by genotypic groups, the force of mortality for individual
i in group j would be z; u;;(z), where z; denotes the frailty (or relative risk)
of each of the individuals in group j and u;;(z) gives the baseline force of
mortality. The value of z; is not known; it is described by a probability density
function g;(z). In many applications the same g will hold for all genotypic
groups and this g may be interpreted as the distribution of genotypic frailty in
the population. The key idea is that genotype determines frailty rather than
the phenotypic trait (lifetime) per se. In genetics, the concept of liability is
sometimes used, the notion being that an individual is susceptible w, say, some
cause of death only if the individual’s liability exceeds some threshold (Falconer,
1981). Frailty is fundamentally different from this kind of liability: frailty is
a relative risk such that the greater an individual’s frailty with regard to some
cause of death (or death in general) the greater the individual’s susceptibility
to the cause of death. (See Vaupel, 1988 for further discussion of frailty with
regard to overall mortality and see Weiss, Chapter 12, for some innovative ideas
concemning frailty with respect to specific diseases).

The baseline force of mortality yu;;(x) is a function of the individual’s age z
and any covariates v;;. Often the log-linear form

w35 (%) = e p°(a) (10-5)
is used, where ¢ is a vector of parameter values. The function u°(z), which

describes the underlying age pattern of the force of mortality, is frequently rep-
resented by the Gompertz function ae®* or the Weibull function az®. Because a
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wide variety of other representations of u;;(z) may, however, be more reason-
able in genetic and demographic research, throughout this chapter the general
notation p;(z) will be used to describe the baseline hazard faced by an indi-
vidual with a given set of covariates. In the simplest case, no covariates are
observed and p; () is given by the same p(z) for every individual. In another
simple case, the only covariate is year of birth and the subscripts i J on g merely
indicate that different birth cohorts may suffer different levels and pattems of
mortality.

In empirical apptlications of frailty models, the observed survival data are used
to estimate the parameters of the distribution of frailty g(z) and the baseline force
of mortality u;; (#). Usually the parameters are estimated so as to maximize the
likelihood of the observed data. The likelihood I of the survival data on a set
of genotypes is the product of the likelihood L; for each genotypic group:

L=
§
A key mathematical result of this chapter is to derive a formula for the
genotypic likelihoods. The formula is based on the theory of survival analysis
as explained in such standard texts as Kalbfleisch and Prentice (1980) and Cox
and Oakes (1984); it is related to a stream of biostatistical research, reviewed
by Hougaard (1987), on so-called multivariate survival analysis. Multivariate,
in this context, refers not to multiple covariates but to groupings of survival
times; the terms “‘kindred-survival analysis’® and “kindred-frailty models’’ are
used in this chapter,
The required formula can be expressed as:

Ly = e""’gi(Mj,mj) . (10-7)

The formula involves three statistics that summarize the data, The first, ky, is
the total log hazard at observed death times:

L. (10-6)

J
=1

Iy
hj = 25-‘:’ log pi;(Xi;) (10-8)

i=1

I; being the number of individuals in genotypic group j. The second summary
statistic, Mj, is the total cumulative hazard:

Iy
M =" Hy(Xy), (10-9)
=1
with
X.’,‘
Hy(Xiy) = / pij(z)dx (10-10)
[H]

Finally, m; is the number of deaths,
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The integral transform g! is given by _
0
g (M,m) = j Me=Mg()d: . (10-12)
4]

Proof of (10-7) is straightforward, It follows from standard methods of sur-
vival analysis that the probability of the survival data for a genotypic group
given the value of z is

15
Ly, = [ lomij(Xig)) " em=HustXe (10-13)
iz}

Furthermore,

L= /0 Liso(z)de . (10-14)

Rearranging terms yields (10-7).

The frailty transform g'(A, m) has some mathematically interesting prop-
erties. Furthermore, it appears frequently in the probability distributions and
likelihoods used in kindred-frailty analysis, as illustrated by several formulas
in this chapter, and it serves as a bridge between ordinary survival analysis
and frailty modeling (on unrelated individuals and events) and kindred-frailty
analysis. These properties and features are discussed in Vaupel (1990). For the
purposes of statistical estimation, what is most importait is that closed-form
expressions can be derived for the transform for a variety of frailty distributions
a{z).

Suppose, for instance, that the distribution of frailty follows a gamma dis-
tribution, as assumed by Beard (1963); Clayton {1978); Vaupel, Manton and
Staltard (1979); Oakes (1982); Wild (1983); Clayton and Cuzick (1985); and
others:

g(z|A, &) = A®251e=2* IT(x) . (10-15)
Then it is readily shown that the frailty transform is
5

g (M, my = Tt ™) A (10-16)

T(s) (A M)=m "
Alternatively, suppose that frailty follows a two-point distribution, such that
individuals are either frail or robust (or either movers or stayers), as assumed in
analyses of hidden heterogeneity by Blumen, Kogan, and McCarthy (1953),
Shepard and Zeckhauser (1980), Keyfitz and Littman {1980), Trussell and
Richards (1985), Vaupel and Yashin (1985b), and others. For this simple dis-
crete distribution,
9(21)=P1 ) 0<Pl <1 ] (10'17)
and
g(z2)=1-pr=p2. (10-18)
The likelihood formula (10-7) straightforwardiy generalizes to discrete distribu-
tions, with a summation replacing the integrals and a probability mass function
replacing the probability density function in the frailty transform. In particular,
for the two-point distribution,

g‘(M, m) = plz{"‘e"“M +p2z§"e""M . _ (1.0-19)
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This result immediately generalizes to N-point distributions. Expressions for
other distributional forms of g(z) are given by Vaupel (1990),

APPLICATION TO DANISH MONOZYGOTIC TWINS

In studies of the genetic and early environmental components of the longevity
of monozygotic (MZ) twins, the frailty z; of & twin pair might be defined as
the relative risk the two twins share (Hougaard, 1986b, Yaupel, 1988). Data
are available on the day, month, and year of birth and death of Danish twins
born from 1870 through 1930 (Hauge et al., 1968, Holm, 1983} and a proposal
to computerize and analyze these data has been prepared by Vaupel, Holm and
others. To explore the estimability of frailty models applied to the Danish twin
data, 5 mortality data sets were generated that might resemble the actual data
set for Danish male MZ twins. Tt was assumed that for twin pairs unbroken at
age 35, mortality rates were given by the Gompertz trajectory

p(z) = ae~TvHET (10-20)

where z is age, y is the birth cohort (varying from zero in 1870 to 60 in 1930),
¢ determines the level of mortality, r is the rate of progress in reducing this
level, and b determines how quickly mortality rates increase with age. In the
simulation, a was 0.0002, b was 0.1 and r was 0.01. Frailty was assumed to be
Gamma distributed with a mean of 1 and a variance of .25; in the simulation the
inverse of the variance, k, was used and set equal 10 4. The data set generated
consisted of 15 twin pairs in the 1870 cohort, gradually increasing to 45 twin
pairs in the 1930 cohort. The last year of observation was 1991 (the final year
of the proposed data updating and computerizing); all survivors were censored
at this lime,

Parameter values were then estimated from the simulated data using the like-
lihood function in (10-7). The results are given in Table 10-1. Reassuringly,
the parameter estimates are close to actual values, with no evidence of impor-
tant bias, and the estimated standard deviations are consistent with the standard
deviations of the estimates.

INTERPRETATION OF THE PARAMETERS OF A FRAILTY MODEL

In a frailty model like the one described above, the parameters of a hazard
function and a frailty distribution are estimated, Given an observed distribution
of lifetimes, the parameters are linked in the following way. As the variance of
the distribution of frailly increases, the variance of the distribution of lifetimes
for each frailty group decreases. Equivalently, as the distribution of frailty
spreads out, the baseline hazard function becomes steeper. In the limit, as the
variance in frailty approaches infinity, the hazard function becomes vertical,
implying that the level of frailty precisely delermines age at death. At the other
extreme, when the variance in frailty is zero, the population is homogeneous
and the hazard function for the various, equivalent genotypic groups is also the
hazard function for the entire population.



KINDRED LIFETIMES . TS

Table 10-1 Comparison of actual and estimated parameters of five simulated data”
sets generated by the frailty model described in the text

Parameters
a b p k o?
Actual Values: L0002 1 01 4. 25
Estimated Values
and (S.D.'s):
Data Set 1 00019 101 0107 3.87 26
(00002) (.002) (OO15)  (49)
2 00019 098 .0081 470 21
(00002) (002) (O015)  (.69)
3 00023 102 0130 410 24
(00003) (002) (0015) (5T)
4 00022 102 0125 3,50 29
(00003)  (002) (0016)  (43)
5 00019 099 0090 400 25

(0002) (002) (0015)  (53)

Table 10-2 Comparison of variances

Variance in Lifetimes

Variance in Lifetimes for Subpopulation with
for Entire Population Frailty Equal to One Variance in Frailty
1614 161.4 0.
161.4 142.6 025
161.4 114.1 i.
161.4 523 10.
161.4 17.1 100,
161.4 0 o0

A simple numerical example provides an illustration. Suppose that the ob-
served distribution of lifetimes is that implied by the Gompertz hazard function
ae®*. Further suppose that frailty is Gamma distributed with mean 1 and vari-
ance c. Finally, suppose that there is a common baseline hazard p(z). Follow-
ing Vaupel, Manton, and Stallard (1979) it can then be ghown that this hazard
function has the form

(2) = actrHOINET=1) (10-21)

Specifically, suppose a is 00005 and b is .1; using numerical methods- it can
be calculated that the population life expectancy {mean lifetime) is 70.3 with a
variance of 161.4. If various values are specified for ¢, then numerical methods
can be used to calculate the variance in lifetimes for *“standard’ individuals
with frailty 1. Some results are shown in Table 10-2. Vaupel (1988) presents
some additional results on the relationship between variance in- lifetimes and

variance in frailty. S T
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COMPETING RISKS

The analysis of genetic factors in various causes of death is an active research
frontier in genetics and epidemiology; Weiss’ chapter (Chapter 12} in this vol-
ume provides a stimulating example. To extend frailty modeling to this area of
research, suppose the force of mortality for individual i in genotypic group j
from cause k is zfpf;. If the same value of = governs frailty with regard to two
or more causes, these causes can be collapsed in a frailty model into a single,
combined cause. Suppose, on the other hand, that different, independent values
of z determine frailty with regard to different causes. If the causes of death
are observed, then if follows from the standard methods of survival analysis
and from (10-7) that the likelihood of the data for a genotypic group j can be
expressed as:

X
Ly =] Lk, (10-22)
k=1
where
L} = &b - gl(M}, mb) . (10-23)

The transform and three summary statistics in this formula are analogous 1o
those used carlier. The total log hazard is given by:

I
hE ="k log pfi(Xy), (10-24)
f=1

where the indicator &f; is one when the individual is known to have died of
cause & and zero otherwise. The total cumulative hazard from cause k is given
by:

X

1;
Mi=3" fo pi(z)de (10-25)
i=1

and the number of deaths from cause & is

I
mf =6k . (10-26)
i=1

’I‘Ee frailty transform is taken with respect to the probability density function of
FAN

g,f,(M, m) = f e~ M gk (Vdy | (10-27)
0

The parameters pertaining to cause k, that is the parameters of the distribution
of z* and of the hazard function #f;(x), that maximize the likelihood of the
data can, in the case of independent causes of death with independent frailties,
be estimated by maximizing

J
L*=TJLk. (10-28)
j=1

This convenient result implies that as in the case of cause-of-death data on
unrelated individuals, data on independent causes of death for genotypic groups
can be analyzed separately without reference to other, competing causes.
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HIDDEN COMPETING RISKS

In intermediate cases where cause-specific frailty values are neither perfectly
dependent nor independent, more structure is required. One approach is to
assume that there are generalized frailty factors that affect two or more causes
of death as well as specific factors that affect a single cause. In the simple
case of two causes of death (perhaps the cause of interest and a group of other
causes), the model might be that a genotype’s hazard from cause 1 s -

(2] + 2} sz (=) (10-29)
and from cause 2 is
(z_? + z}),u,-zj(m) . (10-30)

This blending of risks can be viewed, at least mathematically, in the usual
context of competing risks. However, if an individual dies, say, from cause 1,
it is not known whether the operative hazard was the 2°u*(z) or the 2" p'(%)
component of the risk. Thus the problem can be interpreted as one of hidden
competing risks.

It turns out that methods for analyzing kindred-survival data with hidden
competing risks are useful in several other applications of convergent interest to
geneticists and demographers. Several specific examples are given subsequently;
they involve changes in the impact of genotypic frailty over age, the analysis
of premature vs. senescent death, and the analysis of survival data on relatives
other than MZ twins.

Suppose K causes of death are known to exist but are not observed. Assume
that each frailty group j consists of I; individuals who share independent frailties
2},...,#} with respect to these causes. Let k;; denote the unobserved cause of
death for the #*# individual in the j** group; if the individual is lost to follow-up
let ki; be zero. Let the vector {ki;, ..., ks;) represent a possible set of causes
of death and let L{***) denote the likelihood of this set. This likelihood
can be calculated by (10-22) with &f; equal to 1 when k equals k;; and zero
otherwise. The situation here is exactly the same as with observed causes of
death because the possible set of causes is assumed to be the actval set.

The likelihood of the actual data on the genotypic group is simply the sum
of these cause-specific likelihoods over all possible sets of causes of death:

K K
ZED IR WA

K K RO ¢ 1 1 t K K
z...Ze ¥ gl(Mj,mj)...gl(Mj ,m,'),
1 1

where M} and m} are given by (10-25) and (10-26) a8 before, and where the

summations are taken over all individuals whose age at death is known. For

censored individuals, lost to follow-up, the value of k is zero. )
As a simple example of this formula, consider the case of two hidden causes

of death and two MZ twins with known lifetimes Xy; and Xz, Then

Ly = LY 4 LD 4 £ 4 13D (10-32)

(10-31)

1
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where, ¢.g.,
LY = (X0 iddy (Xag)g} (M, 2)03 (Mo, 0) (10-33)

and
L5 = il (X15) 1835 (Xog )l (M1, 1)gb (M3, 1) (10-34)

Proof of (10-31) is straightforward. It follows from standard mcthods of
survival analysis that

=1 (10-35)

_ Xy X koK .
e Jo AL M

Rearranging terms and substituting h, M, and m, yields (10-31).

CHANGING FRAILTY AND THE GERONTOLOGICAL PARADIGM

In some analyses it may be appropriale o assume thai an individual’s frailty
changes with age (e.g., Yashin, Manion, and Vaupel, 1985 and Vaupel, Yashin,
and Manton, 1988). In the case of the frailty shared by MZ twins, for instance,
it may be plausible that the twins® shared frailty, due to common genotype and
carly environment, becomes less significant as the twins age and cumulatively
experience different environmental influences, That is, it might be hypothesized
that as they become older, twins become more like unrelated individuals.

This hypothesis could be modeied by seuting the force of monality for twins
cqual to

{w(z)z; + [l - w(z)}pij(=) , (10-36)

with w(z) being a weighting function between zero and one that starts off at
one and declines with age. For instance w(z) might be given by e~ The
parameters of this model can be estimated using the method given above for
hidden competing risks, with #; equal to w(z)p;; () and n¥;(z) equal 1o {1 —
w(z))u;; () and with z} equivalent to z; and 27 equal (o one for all genotypes.
Because the population is homogeneous with regard 10 the second *‘cause of
death,” the frailty transform with respect to cause 2 reduces to exp(—M}).

A second example of changing frailty (and of hidden competing risks) is
provided by the hypothesis that there are two theoretically-important kinds of
death at older ages that may be impossible to distinguish in practice: premature
death due to some disease or mishap and genetically-predetermined death due to
senescence. This hypothesis, which many gerontologists believe to be correct,
was popularized by Fries and Crapo (1981). Two MZ twins might share two
frailties with regard to these two broad categories of death and their force of
mortality could be modeled by

zj () + 2}ul; () . (10-37)

The force of mortality from senescent death is thought by many gerontologists
1o be an inexorable consequence of aging and essentially independent of envi-
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ronmental influences, including personal behavior and medical interventions,
Hence, the model might be reduced to o

ul(2) + 2u(z), (1038)

with u?(z) being close to zero until old age and then rising precipitously so
that by age 85 or 50 it becomes the dominant cause of death. As noted earlier,
if 42(z) rises sharply, then the distribution of 2% has a very large variance,
Also note that the model implies that the twins’ overall frailty staris off at
zj and then moves toward z} at older ages, with 2* being more important
in determining age at death than 2! (because it has a large variance and its
associated hazard function is much steeper). Thus, in contrast to the pravious
model, this gerontological model postulates that genotypic factors become more

important at advanced ages in determining mortality.

MONZYGOTIC VS, DIZYGOTIC TWINS

As another example of the use of (10-31), consider the analysis of survival
data on MZ and dizygotic (DZ) twins. Such data is sometimes used by human
geneticists 10 try to separate the observed variance in, say, lifetimes into the
three components of genetic variance, variance due to common environment, and
variance due to other environmental factors (Falconer, 1981). In a corresponding
frailty model, the force of mortality for MZ twins might be assumed to be given
by

wzipli(z) +(1 - w)zgpu(a:) , (10-39)
whereas the force of mortality for DZ twins might be given by '
1
5'—”[3} +2}] phi() + (1 — w)zduli(=) (10-40)

with w being a weight between zero and one.

The model can be interpreted as implying that there are two causes of death
for MZ twins, due o common genotype and common early environment, but
that there are three kinds of death for DZ twins. The first kind is due to
common genes and the third kind to different genes, the weight of 1 reflecting
the fact that DZ twins share half their genes. The assumption herc is that the
genetic determinants of frailty are additive; if there are important dominance or
interaction effects, or if the effects are additive on seme other scale, suchas log
frailty, then the model needs more structure. Also note that the two twins have
different frailties for the third cause of death: under the usual assumption of
random mating, these two z's can be assumed to be independemly drawn from
the population distribution of genotypic frallty

The likelihood function for the MZ twins is identical to (10—32) lhere are
two causes of death and two individuals per genotypic group. The likelihood
function for the DZ twins is somewhat more complicated because there are three
causes of death and because the twins differ from each other in their frailty with
respect to the third cause. That there are three causes of death implies that

s ' § 2, 2,2 2,3
L= LD 4 L0 4 109 4 f30 4 10 4 29

(10-41)
+ Lgsii) + L;-s'z) + L_Ss'S) . SRR .
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Deriving the formula for cach of these eight terms requires a slight digression
to understand the likelihood of survival data on unrelated individuals,

Consider a specific cause of death and suppose the survival data pertain to
individuals with different frailties. Then there are really two groups, with only
one member each, instead of one group with two members. The likelihood of
the combined data is the product of the likelihoods for each of these single-
individual groups:

Ly = {#1:'()(15)6"'9"(1{11',‘51:‘)}{#21()(2;)6”9'(521, 625) }

. (1042)
= ePigh(My;, my;)gt (Mo, my;)

where in this instance M;; and m;; are equivalent to H;; and §;. So instead
of a single transform, it is necessary to use the product of two transforms.
More generally, whenever individuals share a common frailty, their survival
data should be included within the same frailty transform, whereas if they have
different frailties, the data should be separated into different transforms.
Returning to the problem of DZ twins, it can now be seen that, e.g.,

I = MY g (M}, 2)g" (M}, 0)g? (HY;, 0001 (H;, 0) (10-43)
and
(2,%)
L = 57 g1 (M}, 0)g" (M2, 1) (Y, 0)g (HL, 1) (10-44)

The model for MZ twins can be written as zu(z), with z equal to wz! + (1-
w)z?,

A geneticist might ask: what is the variance of the population distribution of
z and how does this variance compare with the genolypic variance of z! vs, the
common-environment variance of 22, Since

Var(z) = a®Var(2') + (1 - a)?Var(2?) (10-45)

the proportion of the variance in overall frailty due to genotypic vs. common-
environment variance is

a?Var(z1)
a?Var(z!) 4 (1 - a)2Var(22)

As indicated earlier, the variance in lifetimes is a function of the variance in
frailty and the variance in lifetimes among individuals with specific levels of
frailty; Vaupel (1990) discusses this. The formulas are, in general, messy, but
can be evaluated by numerical methods, Thus, the customary decomposition
of variance can be retrieved from a frailty analysis. As discussed, however,
by Vaupel (1990), frailty models provide a much richer description than that
provided by a decomposition of variance, and this complexity can be used to gain
& deeper, multifaceted understanding of the nature of genetic and environmental
influences and their interaction.

(10-46)

ADOPTED CHILDREN

As a final example of the use of frailty models with hidden competing risks,
consider data on the lifetimes of adopted children and their adoptive and bio-




KINDRED LIFETIMES 167
logical parents (Soerensen et al., 1988). A simple, first-cut approach to frailty -
modeling of such data would be to use the data to construct three separate
data sets, one on biological fathers and children, one on biological mothers and
children, and the third on adoptive parents and children,
For the first two of these data sets, the hazard function for each parent/child

pair might be

1 1

5%k (2) + g7 (2) (1047)
because parents and children, like DZ twins, share half their genes, Then the
likelihood would be

Li = Mgt (M, my)gt (Hyy, 61591 (Hoz, 695) (10-48)

For the trios of adoptive parents and children, the hazard function and corre-
sponding likelihood might simply be

5435 (2) (1049)

and
L= e""gf(Mj,mj} , (10-50)

where z* would now be interpreted not as genetic frailty but as frailty due to
common environment,

By comparing the distributions of » and :* and the shapes of u and u°*,
some insights might be gained into the interaction among nature, nurture, and
subsequent environment in influencing the longevity of adopted children.

DISCUSSION

The examples in this chapter have concerned survival data on MZ and DZ
twins and on adopted children and their adoptive and biological parents, Many
other data sets on the lifetimes of related individuals exist for humans {¢.g., the
Utah genealogical data base described by Bean, Chapter 15) and various other
species. Furthermore, as discussed in two companion articles (Vaupei, 1990
and Larsen and Vaupel, 1989), the frailty models developed in this chapter can
be extended to other life-history traits and to data on such related events as
an individual’s waiting times 1o successive conceptions. Thus there are broad
possibilities for research by geneticists and demographers in developing and
applying appropriate frailty models to analyze various kinds of data on related
individuals and events. .

Geneticists have developed a large body of knowledge about how genes are
transmitted and about how genes interact with each other and with environ.
mental influences to produce phenotypic outcomes. Evolutionary theory places
strong constraints on genetic properties and recent advances in mapping genes
and in understanding the effects of specific genes are leading to detailed knowl-
edge of the nature and influence of genetic factors. The theories and empirical
findings of geneticists are crucial in constructing frailty models, both in the de-
termining the general form of such models (as illustrated im this- chapter) and in
determining the functional forms to be used for frailty distributions and hazard
functions. In this chapter, frailty was assumed to be, say, Gamma distributed
and the force of mortality was assumed to follow, say, a Gompertz trajectory.




168 CONVERGENT ISSUES IN GENETICS AND DEMOGRAPHY

There is some evidence that such assumptions are reascnable for some kinds
of analyses, but in other cases, as discussed by Trusscll and Rodriguez in this
volume, it is mathematical convenience more than biological reality that dictates
the assumptions made. Consequently, as suggested by Weiss (Chapter 12), an
important convergent area of research for genelicists and demographers is the
study of the biological underpinnings of and constraints on the functional forms
used in frailty models. An example of such research is a study in progress by
J. W. Curtsinger and the author of the shape of the force of mortality function for
several Drosophila genotypes: survival data are being gathered on four inbred
lines and their six F) crosses, each population consisting of 5,000 individuals
raised under similar conditions.

In addition to research on developing more powerful and appropriate meth-
ods and models for frailty analysis, geneticists and demographers can engage in
research in applying the frailty methods that have been developed, Although ex-
isting methods have major weaknesses and shortcomings, they may lead to some
different and perhaps deeper insights. In particular, the methods adumbrated in
this chapter, which represent a hybridization of two very different approaches
currently used by geneticists and demographers, may help rescarchers in both
disciplines as well as providing a basis for productive cross-disciplinary research.

For geneticists, the methods of kindred-frailty modeling provide an alterna-
tive, in the analysis of life-history traits, to customary methods of decomposition
of variance. A key strength of the frailty approach is that it provides a rich de-
scription of reality as summarized by hazard functions and frailty distributions.
Furthermore, frailty models highlight the interaction between nature and nuriure,
because genotypic and environmental influences are fundamentally intertwined
in the multipticative relationship between frailty and the bascline hazard func-
tion,

For demographers, the methods of kindred-frailty modeling provide a means
for taking advantage of life-history data on related individuals and events: nearly
all demographic analyses to date have treated such data as if the individuals and
events were unrelatcd. Furthermore, as indicated above, kindred-frailty models
can help demographers clarify what is meant by *‘frailty.’’ In kindred-frailty
models, as illustrated in this chapter, the meaning of frailty is clear. In models
of frailty for unrelated individuals, it is sometimes difficult to sort out the
conceptual basis for dividing the heterogeneity among individuals into a frailty
component and a residual component given by the distribution of lifetimes of
individuals with the same frailty. Finally, from kindred-frailty models grounded
in genetic theory and findings, demographers can gain a decper understanding
of the biological constraints on the distribution of frailty and on the shape of
hazard trajectories.
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